cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A243753 Number A(n,k) of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of k, where 1=U=(1,1) and 0=D=(1,-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 4, 1, 1, 0, 0, 0, 1, 1, 2, 4, 1, 9, 1, 1, 0, 0, 0, 1, 1, 2, 4, 9, 1, 21, 1, 1, 0, 0, 0, 1, 1, 1, 4, 9, 21, 1, 51, 1, 1, 0, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   1,   1,    1, ...
  0, 0, 0, 1, 1,   1, 1,   2,   2,    2, ...
  0, 0, 0, 1, 1,   2, 1,   4,   4,    4, ...
  0, 0, 0, 1, 1,   4, 1,   9,   9,    9, ...
  0, 0, 0, 1, 1,   9, 1,  21,  21,   23, ...
  0, 0, 0, 1, 1,  21, 1,  51,  51,   63, ...
  0, 0, 0, 1, 1,  51, 1, 127, 127,  178, ...
  0, 0, 0, 1, 1, 127, 1, 323, 323,  514, ...
  0, 0, 0, 1, 1, 323, 1, 835, 835, 1515, ...
		

Crossrefs

Columns give: 0, 1, 2: A000007, 3, 4, 6: A000012, 5: A001006(n-1) for n>0, 7, 8, 14: A001006, 9: A135307, 10: A078481 for n>0, 11, 13: A105633(n-1) for n>0, 12: A082582, 15, 16: A036765, 19, 27: A114465, 20, 24, 26: A157003, 21: A247333, 25: A187256(n-1) for n>0.
Main diagonal gives A243754 or column k=0 of A243752.

Programs

  • Maple
    A:= proc(n, k) option remember; local b, m, r, h;
          if k<2 then return `if`(n=0, 1, 0) fi;
          m:= iquo(k, 2, 'r'); h:= 2^ilog2(k); b:=
          proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
            `if`(t=m and r=1, 0, b(x-1, y+1, irem(2*t+1, h)))+
            `if`(t=m and r=0, 0, b(x-1, y-1, irem(2*t, h)))))
          end; forget(b);
          b(2*n, 0, 0)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{b, m, r, h}, If[k<2, Return[If[n == 0, 1, 0]]]; {m, r} = QuotientRemainder[k, 2]; h = 2^Floor[Log[2, k]]; b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, If[t == m && r == 1, 0, b[x-1, y+1, Mod[2*t+1, h]]] + If[t == m && r == 0, 0, b[x-1, y-1, Mod[2*t, h]]]]]; b[2*n, 0, 0]]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)

A216604 G.f. satisfies: A(x) = (1 + x*(1-x)*A(x)) * (1 + x^2*A(x)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 12, 19, 33, 59, 102, 181, 329, 593, 1076, 1979, 3643, 6723, 12494, 23289, 43498, 81557, 153356, 288925, 545687, 1032997, 1958978, 3721819, 7083716, 13503311, 25778612, 49283755, 94345179, 180830195, 347006694, 666636809, 1282024484, 2467964693
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Comments

The radius of convergence of the g.f. A(x) equals 1/2, with A(1/2) = 4.
More generally, if A(x) = (1 + x*(t-x)*A(x)) * (1 + x^2*A(x)), |t|>0, then
A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k) )
where the radius of convergence r of the g.f. A(x) satisfies
r = (1-r)^2/(t-r) = (1-t*r)/(2*(1-r)) with A(r) = 1/(r*(1-r)) = 2/(1-t*r).
Number of Motzkin excursions of length n that avoid the patterns UU, UD and DH. A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0. - Andrei Asinowski, Dec 20 2019

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 19*x^8 + ...
The logarithm of the g.f. begins:
log(A(x)) = ((1-x) + x)*x + ((1-x)^2 + 2^2*x*(1-x) + x^2)*x^2/2 +
((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3)*x^3/3 +
((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4)*x^4/4 +
((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5)*x^5/5 + ...
Explicitly,
log(A(x)) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 6*x^5/5 + 16*x^6/6 + 29*x^7/7 + 45*x^8/8 + 94*x^9/9 + 186*x^10/10 + ... + A217464(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 - x) - Sqrt[(1 - x)^2 - 4*x^3*(1 - x)])/(2*x^3 *(1 - x)), {x,0,50}], x] (* G. C. Greubel, Jan 24 2017 *)
  • Maxima
    a(n):=sum(sum(binomial(n-2*q-2,n-r-q)*binomial(q+1,r-1)*binomial(q+1,r) ,r,0,q+1)/(q+1), q,0,n); /* Vladimir Kruchinin, Jan 22 2019 */
    a(n):=sum((binomial(2*m,m)*binomial(n-2*m+1,n-3*m))/(n-2*m+1),m,0,n/3);
    /*Vladimir Kruchinin, Jan 27 2022 */
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^(m-k) + x*O(x^n)))),n)}
    
  • PARI
    {a(n)=polcoeff(2/(1-x+sqrt((1-x)^2-4*x^3*(1-x) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023
    

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k) ).
G.f.: ((1-x) - sqrt( (1-x)^2 - 4*x^3*(1-x) )) / (2*x^3*(1-x)).
a(n) ~ 2^(n+2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
a(n) = Sum_{q=0..n} 1/(q+1)*Sum_{r=0..q+1} C(n-2*q-2,n-r-q)*C(q+1,r-1)*C(q+1,r). - Vladimir Kruchinin, Jan 22 2019
a(n) = 1 + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Jan 28 2021
a(n) = Sum_{m=0..n/3} C(2*m,m)*C(n-2*m+1,n-3*m)/(n-2*m+1). - Vladimir Kruchinin, Jan 27 2022

A119370 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*(A(x)^2 - A(x)).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 225, 816, 3031, 11473, 44096, 171631, 675130, 2679728, 10719237, 43168826, 174885089, 712222799, 2914150406, 11973792218, 49385167369, 204386777160, 848530495383, 3532844222611, 14747626307436, 61712139464939
Offset: 0

Views

Author

Paul D. Hanna, May 16 2006

Keywords

Comments

Equals base sequence of pendular trinomial triangle A119369; iterated convolutions of this sequence with the central terms (A119371) generates all diagonals of A119369. For example: A119372 = A119370 * A119371; A119373 = A119370^2 * A119371.
Diagonal sums of number array A133336. - Philippe Deléham, Nov 09 2009

Examples

			A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 225*x^6 + 816*x^7 +...
x*A(x)^2 = x + 2*x^2 + 5*x^3 + 16*x^4 + 54*x^5 + 190*x^6 + 690*x^7 +...
x^2*( A(x)^2 - A(x) ) = 1*x^3 + 3*x^4 + 10*x^5 + 35*x^6 + 126*x^7 +...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (1+x^2 -Sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)) )); // G. C. Greubel, Mar 17 2021
  • Maple
    m:= 30;
    S:= series( (1+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)), x, m+1);
    seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[Series[((1+x^2)-Sqrt[(1+x^2)^2-4*x*(1+x)])/(2*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 11 2013 *)
  • PARI
    {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n))),n)}
    
  • Sage
    def A119370_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1+x^2 -sqrt(1-4*x-2*x^2+x^4))/(2*x*(1+x)) ).list()
    A119370_list(30) # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A(x) = ((1+x^2) - sqrt( (1+x^2)^2 - 4*x*(1+x) ))/(2*x*(1+x)). Equals the inverse binomial transform of A104547.
Recurrence: (n+1)*a(n) = 3*(n-1)*a(n-1) + 6*(n-1)*a(n-2) + 2*(n-2)*a(n-3) - (n-5)*a(n-4) - (n-5)*a(n-5). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(-z^2-3*z+1)*(4+2*z-z^3)^(n+1)*(-z^3+z^2+z+3) / (8*sqrt(Pi) * n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - Vaclav Kotesovec, Sep 11 2013
G.f.: 1/G(0) where G(k) = 1 - q/(1 - (q + q^2) / G(k+1) ). - Joerg Arndt, Dec 06 2014
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,k) * binomial(2*n-3*k+1,n-2*k)/(2*n-3*k+1). - Seiichi Manyama, Aug 28 2023
Conjecture: A(x) = 1 + x*exp(Sum_{n >= 1} g(n, x)*x^n/n), where g(n, x) = Sum_{k = 0..n} binomial(n, k)^2*(1 + x)^k. Cf. A105633 and A167638. - Peter Bala, Sep 10 2024

A105632 Triangle, read by rows, where the g.f. A(x,y) satisfies the equation: A(x,y) = 1/(1-x*y) + x*A(x,y) + x^2*A(x,y)^2.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 7, 4, 1, 1, 21, 19, 10, 5, 1, 1, 51, 51, 31, 13, 6, 1, 1, 127, 141, 91, 45, 16, 7, 1, 1, 323, 393, 276, 141, 61, 19, 8, 1, 1, 835, 1107, 834, 461, 201, 79, 22, 9, 1, 1, 2188, 3139, 2535, 1485, 701, 271, 99, 25, 10, 1, 1, 5798, 8953, 7711, 4803, 2381, 1001, 351, 121, 28, 11, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 17 2005

Keywords

Comments

Column 0 is A001006 (Motzkin numbers). Column 1 is A002426 (Central trinomial coefficients). Row sums form A105633 (also equal to A057580?).
T(n,k) is the number of UUDU-avoiding Dyck paths of semilength n+1 with k UDUs, where U = (1,1) is an upstep and D = (1,-1) is a downstep. For example, T(3,1) = 3 counts UDUUUDDD, UDUUDDUD, UUDDUDUD. - David Callan, Nov 25 2021

Examples

			Triangle begins:
    1;
    1,    1;
    2,    1,   1;
    4,    3,   1,   1;
    9,    7,   4,   1,   1;
   21,   19,  10,   5,   1,  1;
   51,   51,  31,  13,   6,  1,  1;
  127,  141,  91,  45,  16,  7,  1, 1;
  323,  393, 276, 141,  61, 19,  8, 1, 1;
  835, 1107, 834, 461, 201, 79, 22, 9, 1, 1; ...
Let G = (1-2*x-3*x^2), then the column g.f.s are:
k=1: 1/sqrt(G)
k=2: (G + (1)*1*x^2)/sqrt(G^3)
k=3: (G^2 + (1)*2*x^2*G + (2)*1*x^4)/sqrt(G^5)
k=4: (G^3 + (1)*3*x^2*G^2 + (2)*3*x^4*G + (5)*1*x^6)/sqrt(G^7)
k=5: (G^4 + (1)*4*x^2*G^3 + (2)*6*x^4*G^2 + (5)*4*x^6*G + (14)*1*x^8)/sqrt(G^9)
and involve Catalan numbers and binomial coefficients.
MATRIX INVERSE.
The matrix inverse starts
     1;
    -1,   1;
    -1,  -1,   1;
     0,  -2,  -1,  1;
     2,  -1,  -3, -1,  1;
     6,   2,  -2, -4, -1,  1;
    13,  10,   2, -3, -5, -1,  1;
    18,  32,  14,  2, -4, -6, -1,  1;
   -12,  76,  56, 18,  2, -5, -7, -1,  1;
  -206, 108, 162, 86, 22,  2, -6, -8, -1, 1;
- _R. J. Mathar_, Apr 08 2013
		

Crossrefs

Cf. A105633 (row sums), A001006 (column 0), A002426 (column 1).

Programs

  • Maple
    A105632 := proc(n,k)
        (1-x-sqrt((1-x)^2-4*x^2/(1-x*y)))/2/x^2 ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc: # R. J. Mathar, Apr 08 2013
  • Mathematica
    T[n_, k_] := SeriesCoefficient[(1 - x - Sqrt[(1 - x)^2 - 4*x^2/(1 - x*y)])/(2*x^2), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&;
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2023 *)
  • PARI
    {T(n,k)=local(A=1+x+x*y+x*O(x^n)+y*O(y^k)); for(i=1,n,A=1/(1-x*y)+x*A+x^2*A^2);polcoeff(polcoeff(A,n,x),k,y)}
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k));polcoeff(polcoeff( 2/(1-X+sqrt((1-X)^2-4*X^2/(1-X*Y)))/(1-X*Y),n,x),k,y)}

Formula

G.f. for column k (k>0): Sum_{j=0..k-1} C(k-1, j)*A000108(j)*x^(2*j)/(1-2*x-3*x^2)^(j+1/2), where A000108(j) = binomial(2*j, j)/(j+1) is the j-th Catalan number.
G.f.: A(x, y) = (1-x - sqrt((1-x)^2 - 4*x^2/(1-x*y)))/(2*x^2).

A258973 The number of plain lambda terms presented by de Bruijn indices, see Bendkowski et al., where zeros have no weight.

Original entry on oeis.org

1, 3, 10, 40, 181, 884, 4539, 24142, 131821, 734577, 4160626, 23881695, 138610418, 812104884, 4796598619, 28529555072, 170733683579, 1027293807083, 6211002743144, 37713907549066, 229894166951757, 1406310771154682, 8630254073158599, 53117142215866687, 327800429456036588
Offset: 0

Views

Author

Kellen Myers, Jun 15 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 3, 10, 40][n+1],
          ((8*n-3)*a(n-1)-(10*n-13)*a(n-2)
         +(4*n-11)*a(n-3)-(n-4)*a(n-4))/(n+1))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 30 2015
    a := n -> add(hypergeom([(i+1)/2, i/2+1, i-n+1], [1, 2], -4), i=0..n-1):
    seq(simplify(a(n)), n=0..25); # Peter Luschny, May 03 2018
  • Mathematica
    a[n_] := a[n] = If[n<4, {1, 3, 10, 40}[[n+1]], ((8*n-3)*a[n-1] - (10*n-13)*a[n-2] + (4*n-11)*a[n-3] - (n-4)*a[n-4])/(n+1)]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 22 2015, after Alois P. Heinz *)
  • Maxima
    a(n):=sum(sum((binomial(k+i-1,k-1)*binomial(2*k+i-2,k+i-1)*binomial(n-i-1,n-k-i))/k,k,1,n-i),i,0,n); /* Vladimir Kruchinin, May 03 2018 */
  • PARI
    lista(nn) = {z = y + O(y^nn); Vec(((1-z)^2 - sqrt((1-z)^4-4*z*(1-z))) / (2*z*(1-z)));} \\ Michel Marcus, Jun 30 2015
    

Formula

G.f. G(z) satisfies z*G(z)^2 - (1-z)*G(z) + 1/(1-z) = 0 (see Bendkowski link Appendix B, p. 23). - Michel Marcus, Jun 30 2015
a(n) ~ 3^(n+1/2) * sqrt(43/(2*((43*(3397 - 261*sqrt(129)))^(1/3) + (43*(3397 + 261*sqrt(129)))^(1/3) - 86)*Pi)) / (3 - (2*6^(2/3)) / (sqrt(129)-9)^(1/3) + (6*(sqrt(129)-9))^(1/3))^n / (2*n^(3/2)). - Vaclav Kotesovec, Jul 01 2015
a(n) = 1 + a(n-1) + Sum_{i=0..n-1} a(i)*a(n-1-i). - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n} Sum_{k=1..n-i} binomial(k+i-1,k-1)*binomial(2*k+i-2,k+i-1)*binomial(n-i-1,n-k-i)/k. - Vladimir Kruchinin, May 03 2018
a(n) = Sum_{i=0..n-1} hypergeom([(i+1)/2, i/2+1, i-n+1], [1, 2], -4). - Peter Luschny, May 03 2018
From Peter Bala, Sep 02 2024: (Start)
a(n) = Sum_{k = 0..n} 1/(k + 1) * binomial(2*k, k)*binomial(n+2*k+1, 3*k+1).
Partial sums of A360102. Cf. A086616.
a(n) = (n + 1)*hypergeom([1/2, -n, (n+2)/2, (n+3)/2], [2, 2/3, 4/3], -16/27).
P-recursive: (n + 1)*a(n) = (8*n - 3)*a(n-1) - (10*n - 13)*a(n-2) + (4*n - 11)*a(n-3) - (n - 4)*a(n-4) with a(0) = 1, a(1) = 3, a(2) = 10 and a(3) = 40.
G.f. A(x) = 1/(1 - x)^2 * c(x/(1-x)^3) = (1 - x - sqrt((1 - 7*x + 3*x^2 - x^3)/(1 - x)))/(2*x), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

More terms from Michel Marcus, Jun 30 2015

A116424 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDUU's, 0 <= k <= floor((n-1)/2).

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 5, 22, 19, 1, 57, 66, 9, 154, 221, 53, 1, 429, 729, 258, 14, 1223, 2391, 1131, 116, 1, 3550, 7829, 4652, 745, 20, 10455, 25638, 18357, 4115, 220, 1, 31160, 84033, 70404, 20598, 1790, 27, 93802, 275765, 264563, 96286, 12104, 379, 1, 284789
Offset: 0

Views

Author

I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006

Keywords

Comments

T(n,k) also gives the number of Dyck paths of semilength n with k UUDU's.
Column k=0 gives A105633(n-1) for n > 0.

Examples

			Triangle begins:
00 :     1;
01 :     1;
02 :     2;
03 :     4,    1;
04 :     9,    5;
05 :    22,   19,    1;
06 :    57,   66,    9;
07 :   154,  221,   53,   1;
08 :   429,  729,  258,  14;
09 :  1223, 2391, 1131, 116,  1;
10 :  3550, 7829, 4652, 745, 20;
...
T(4,1) = 5 because there exist five Dyck paths of semilength 4 with one occurrence of UDUU : UDUUUDDD, UDUUDUDD, UDUUDDUD, UUDUUDDD, UDUDUUDD.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])*
         `if`(t=4, z, 1) +b(x-1, y-1, [1, 3, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 02 2014
  • Mathematica
    s = Series[((1 + (t - 1) z^2) - Sqrt[(1 + (t - 1) z^2)^2 - 4*z*(1 - z + z*t)])/(2*z*(1 - z + z*t)), {z, 0, 15}] // CoefficientList[#, z]&;
    CoefficientList[#, t]& /@ s // Flatten (* updated by Jean-François Alcover, Feb 14 2021 *)

Formula

T(n,k) = Sum_{i=k..floor((n-1)/2)} (-1)^(i+k) * binomial(i,k) * binomial(n-i,i) * binomial(2*n-3*i, n - 2*i -1)/(n-i), n >= 1.
G.f. G = G(t,z) satisfies G = 1 + z^2(1-t)G + z(1-z+tz)G^2.

A273897 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having abscissa of first descent k (n>=2, 1<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 22, 30, 25, 14, 5, 1, 57, 78, 69, 44, 20, 6, 1, 154, 210, 192, 133, 70, 27, 7, 1, 429, 582, 542, 396, 230, 104, 35, 8, 1, 1223, 1651, 1554, 1176, 731, 369, 147, 44, 9, 1, 3550, 4772, 4521, 3504, 2285, 1248, 560, 200, 54, 10, 1
Offset: 2

Views

Author

Emeric Deutsch, Jun 06 2016

Keywords

Comments

Number of entries in row n is n-1.
Sum of entries in row n = A082582(n).
T(n,1) = A105633(n-3) (n>=3).
Sum(k*T(n,k), k>=1) = A273898(n).

Examples

			Row 4 is 2,2,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding pictures give the values 3,2,1,2,1 for the abscissae of the first descents.
Triangle starts
1;
1,1;
2,2,1;
4,5,3,1;
9,12,9,4,1;
22,30,25,14,5,1.
		

Crossrefs

Programs

  • Maple
    G := (1/2)*t*z*(1-2*t*z-z^2-sqrt(1-4*z+2*z^2+z^4))/(1-t-z+t^2*z+t*z^2): Gser := simplify(series(G, z = 0, 20)): for n from 2 to 18 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form
  • Mathematica
    nmax = 13; G = (1/2) t z (1 - 2t z - z^2 - Sqrt[1 - 4z + 2z^2 + z^4])/(1 - t - z + t^2 z + t z^2); Gser = G + O[z]^nmax;
    Do[P[n] = Expand[Coefficient[Gser, z, n]], {n, 2, nmax}];
    Table[CoefficientList[P[n]/t, t], {n, 2, nmax}] // Flatten (* Jean-François Alcover, Jul 24 2018, from Maple *)

Formula

G.f.: G(t,z)=(1/2)tz(1-2tz-z^2-sqrt(1-4z+2z^2+z^4))/(1-t-z+t^2z+tz^4), where z marks semiperimeter and t marks the abscissa of the first descent.

A332776 a(n) = 1 + Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 2, 5, 18, 83, 464, 3041, 22810, 192595, 1807328, 18658097, 210138882, 2563990859, 33691089824, 474327797585, 7123141539610, 113656386574099, 1920170741071280, 34242622099969217, 642792206343361602, 12669617513914228907, 261613287097165614224, 5647565141926833774977
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
    terms = 23; A[] = 0; Do[A[x] = Normal[Integrate[Exp[x] + A[x] (A[x] - 1), x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]!

Formula

E.g.f. A(x) satisfies: d/dx A(x) = exp(x) + A(x) * (A(x) - 1).
From Vaclav Kotesovec, Jun 09 2020: (Start)
E.g.f.: exp(x/2) * (BesselJ(2, 2*exp(x/2)) * BesselY(0,2) - BesselJ(0,2) * BesselY(2, 2*exp(x/2))) / (BesselJ(1, 2*exp(x/2)) * BesselY(0,2) - BesselJ(0,2) * BesselY(1, 2*exp(x/2))).
a(n) ~ n! / r^(n+1), where r = 1.0654335847261788612657252860730850911833168584... is the smallest real root of the equation BesselJ(1, 2*exp(r/2)) * BesselY(0,2) = BesselJ(0,2) * BesselY(1, 2*exp(r/2)). (End)

A346075 a(n) = 1 + Sum_{k=1..n-3} a(k) * a(n-k-3).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 10, 16, 25, 41, 69, 115, 192, 326, 558, 955, 1641, 2839, 4930, 8578, 14972, 26222, 46037, 80988, 142793, 252307, 446617, 791885, 1406394, 2501642, 4456080, 7947963, 14194221, 25379751, 45430710, 81409233, 146028788, 262192876, 471193406
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 3], {k, 1, n - 3}]; Table[a[n], {n, 0, 40}]
    nmax = 40; A[] = 0; Do[A[x] = 1/(1 - x) + x^3 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • SageMath
    @CachedFunction
    def a(n): # a = A346075
        if (n<4): return 1
        else: return 1 + sum(a(k)*a(n-k-3) for k in range(1,n-2))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 27 2022

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^3 * A(x) * (A(x) - 1).

A346076 a(n) = 1 + Sum_{k=1..n-4} a(k) * a(n-k-4).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 11, 17, 25, 36, 54, 84, 131, 201, 307, 475, 745, 1172, 1837, 2878, 4531, 7173, 11381, 18057, 28669, 45624, 72796, 116336, 186066, 297865, 477505, 766621, 1232214, 1982292, 3191693, 5143974, 8298640, 13399691, 21652705, 35014373, 56663700
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 4], {k, 1, n - 4}]; Table[a[n], {n, 0, 44}]
    nmax = 44; A[] = 0; Do[A[x] = 1/(1 - x) + x^4 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • SageMath
    @CachedFunction
    def a(n): # a = A346076
        if (n<5): return 1
        else: return 1 + sum(a(k)*a(n-k-4) for k in range(1,n-3))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 27 2022

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^4 * A(x) * (A(x) - 1).
Showing 1-10 of 19 results. Next