cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A105633 Row sums of triangle A105632.

Original entry on oeis.org

1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789, 871008, 2681019, 8298933, 25817396, 80674902, 253106837, 796968056, 2517706037, 7977573203, 25347126630, 80738862085, 257778971504, 824798533933
Offset: 0

Views

Author

Paul D. Hanna, Apr 17 2005

Keywords

Comments

Binomial transform of A007477. INVERT transform of A082582. First differences give A086581 and A025242 (offset 1). Is this sequence equal to A057580?
a(n) = the number of Dyck paths of semilength n+1 avoiding UUDU. a(n) = the number of Dyck paths of semilength n+1 avoiding UDUU = the number of binary trees without zigzag (i.e., with no node with a father, with a right son and with no left son). This sequence is the first column of the triangle A116424. E.g., a(2) = 4 because there exist four Dyck paths of semilength 3 that avoid UUDU: UDUDUD, UDUUDD, UUDDUD, UUUDDD, as well as four Dyck paths of semilength 3 that avoid UDUU: UDUDUD, UUDUDD, UUDDUD, UUUDDD. - I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006
The sequence beginning 1,1,2,4,9,... gives the diagonal sums of A130749, and has g.f. 1/(1-x-x^2/(1-x/(1-x-x^2/(1-x/(1-x-x^2/(1-... (continued fraction); and general term Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} binomial(n-k,j)*A090181(j,k). Its Hankel transform is A099443(n+1). - Paul Barry, Jun 30 2009
The number of plain lambda terms presented by de Bruijn indices, see Bendkowski et al. - Kellen Myers, Jun 15 2015
a(n) = the number of Dyck paths of semilength n+1 with no pairs of
consecutive valleys at the same height. Sergi Elizalde, Feb 25 2021

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 22*x^4 + 57*x^5 + 154*x^6 + 429*x^7 + ...
with A(x)^2 = 1 + 4*x + 12*x^2 + 34*x^3 + 96*x^4 + 274*x^5 + 793*x^6 + ...
where A(x) = 1 + x*(2-x)*A(x) + x^2*(1-x)*A(x)^2.
The logarithm of the g.f. begins:
log(A(x)) = (1 + (1-x))*x + (1 + 2^2*(1-x) + (1-x)^2)*x^2/2 +
(1 + 3^2*(1-x) + 3^2*(1-x)^2 + (1-x)^3)*x^3/3 +
(1 + 4^2*(1-x) + 6^2*(1-x)^2 + 4^2*(1-x)^3 + (1-x)^4)*x^4/4 +
(1 + 5^2*(1-x) + 10^2*(1-x)^2 + 10^2*(1-x)^3 + 5^2*(1-x)^4 + (1-x)^5)*x^5/5 + ...
Explicitly,
log(A(x)) = 2*x + 4*x^2/2 + 11*x^3/3 + 32*x^4/4 + 97*x^5/5 + 301*x^6/6 + 947*x^7/7 + 3008*x^8/8 + 9623*x^9/9 + 30959*x^10/10 + ...
		

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^i*hypergeom([(i+1)/2, i/2+1, i-n-1], [1, 2], -4), i=0..n+1):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, May 03 2018
  • Mathematica
    CoefficientList[Series[(1 - x - Sqrt[(1 - x)^2 - 4 x^2/(1 - x)])/(2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); polcoeff(2/(1-X)/(1-X+sqrt((1-X)^2-4*X^2/(1-X))),n,x)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*(1-x)^(m-k) + x*O(x^n)))),n)} \\ Paul D. Hanna, Sep 12 2012

Formula

G.f.: A(x) = (1-x - sqrt((1-x)^2 - 4*x^2/(1-x)))/(2*x^2).
a(n) = 2*a(n-1) + Sum_{i=1..n-2} a(i)*(a(n-1-i) - a(n-2-i)). a(n) = Sum_{i=0..floor(n/2)} (-1)^i * binomial(n+1-i,i) * binomial(2*(n+1)-3*i, n-2*i) /(n+1-i). - I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006
G.f.: (1/(1-x)^2)c(x^2/(1-x)^3), where c(x) is the g.f. of A000108. - Paul Barry, May 22 2009
1/(1-x-x/(1-x^2/(1-x-x/(1-x^2/(1-x-x/(1-x^2/(1-... (continued fraction). - Paul Barry, Jun 30 2009
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} binomial(n-k,j)(0^(j+k)+(1/(j+0^j))*binomial(j,k)*binomial(j,k+1)). - Paul Barry, Jun 30 2009
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x*(1-x)*A(x)). - Paul D. Hanna, Sep 12 2012
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * (1-x)^k ). - Paul D. Hanna, Sep 12 2012
D-finite with recurrence: (n+2)*a(n) + (-4*n-3)*a(n-1) + (2*n+1)*a(n-2) + a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 26 2012
The recurrence is true, since by holonomic transformation, it can be computed formally using GFUN, associated with the equation: x^3 + x^2 - 2x + (x^3 + 3 x^2 -3x +1) A(x) + (x^5 + 2x^3 -4 x^2 + x) A'(x) = 0. - Pierre Lescanne, Jun 30 2015
G.f.: (1 - 1/(G(0)-x))/x^2 where G(k) = 1 + x/(1 + x/(x^2 - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
a(n) ~ 2^(n/3-1/6) * 3^(n+2) * (13+3*sqrt(33))^((n+1)/3) * sqrt(4*(2879 + 561*sqrt(33))^(1/3) + 8*(7822 + 1362*sqrt(33))^(1/3) - 91 - 21*sqrt(33)) / (((26+6*sqrt(33))^(2/3) - (26+6*sqrt(33))^(1/3) - 8)^(n+3/2) * (4*(26+6*sqrt(33))^(1/3) - (26+6*sqrt(33))^(2/3) + 8) * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Mar 13 2014
a(n) = Sum_{i=0..n+1} (-1)^i*hypergeom([(i+1)/2, i/2+1, i-n-1], [1, 2], -4). - Peter Luschny, May 03 2018

Extensions

More terms from I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006

A217615 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).

Original entry on oeis.org

1, 1, 1, 3, 5, 7, 15, 29, 49, 95, 187, 345, 659, 1289, 2465, 4739, 9237, 17911, 34715, 67705, 132063, 257477, 503309, 984983, 1927895, 3778017, 7411237, 14544967, 28565661, 56144615, 110406527, 217225533, 427636561, 842256047, 1659600955, 3271579689, 6451913519
Offset: 0

Views

Author

Paul D. Hanna, Oct 09 2012

Keywords

Comments

Radius of convergence of g.f. is r = 1/2.
More generally, given
A(x) = Sum_{n>=1} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k),
then A(x) = 1/sqrt( (1 - t*x + 2*x^2)^2 - 4*x^2 )
and the radius of convergence r satisfies: (1-r)^2 = r*(t-r) for t > 0.
a(n) is the number of (2k-1)-element subsets of {1, 2, ..., n+1} whose k-th smallest (i.e., k-th largest) element equals 2k-1. - Darij Grinberg, Oct 09 2019

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 15*x^6 + 29*x^7 + 49*x^8 + ...
where the g.f. equals the series:
A(x) = 1 +
  x*((1-x) + x) +
  x^2*((1-x)^2 + 2^2*x*(1-x) + x^2) +
  x^3*((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3) +
  x^4*((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4) +
  x^5*((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5) + ...
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n < 4, [1, 1, 1, 3][n+1], hypergeom([1/2, (1-n)/3, (2-n)/3, -n/3], [1, (1-n)/2, -n/2], -27)):
    seq(simplify(a(n)), n=0..36); # Peter Luschny, Oct 09 2019
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x+2*x^2)^2-4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^(m-k) + x*O(x^n))), n)}
    for(n=0,40,print1(a(n),", "))
    
  • PARI
    a(n)={sum(k=0, n\2, binomial(2*k, k) * binomial(n-2*k, k))} \\ Andrew Howroyd, Oct 09 2019

Formula

G.f.: A(x) = 1 / sqrt( (1 - x + 2*x^2)^2 - 4*x^2 ).
G.f.: A(x) = 1 / sqrt( (1-x)*(1-2*x)*(1+x+2*x^2) ).
G.f. satisfies: A(x) = (1 + 2*x^2*Sum_{n>=0} A000108(n)*(-x*A(x))^(2*n)) / (1-x+2*x^2) where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers.
a(n) ~ 2^n/sqrt(Pi*n). - Vaclav Kotesovec, Sep 16 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k, k) * binomial(n-2*k, k). - Darij Grinberg, Oct 09 2019
a(n) = hypergeom([1/2,(1-n)/3,(2-n)/3, -n/3], [1, (1-n)/2, -n/2], -27) for n >= 4. - Peter Luschny, Oct 09 2019

A346073 a(n) = 1 + Sum_{k=0..n-4} a(k) * a(n-k-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 45, 73, 118, 185, 293, 475, 778, 1263, 2047, 3345, 5512, 9085, 14957, 24683, 40918, 67987, 113016, 188053, 313608, 524041, 876657, 1467797, 2460644, 4130893, 6942726, 11678687, 19663068, 33139295, 55904339, 94384167, 159470488
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 4], {k, 0, n - 4}]; Table[a[n], {n, 0, 42}]
    nmax = 42; A[] = 0; Do[A[x] = 1/(1 - x) + x^4 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023
  • SageMath
    @CachedFunction
    def a(n): # a = A346073
        if (n<4): return 1
        else: return 1 + sum(a(k)*a(n-k-4) for k in range(n-3))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 26 2022
    

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^4 * A(x)^2.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * Catalan(k). - Seiichi Manyama, Jan 22 2023

A217464 L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).

Original entry on oeis.org

1, 1, 4, 5, 6, 16, 29, 45, 94, 186, 331, 644, 1275, 2409, 4644, 9117, 17630, 34162, 66843, 130390, 254153, 497487, 974166, 1906860, 3739131, 7338839, 14406214, 28303525, 55651262, 109465176, 215431773, 424229309, 835747510, 1647145386, 3247768579, 6406290590
Offset: 1

Views

Author

Paul D. Hanna, Oct 03 2012

Keywords

Examples

			L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 6*x^5/5 + 16*x^6/6 + 29*x^7/7 +...
such that the l.g.f. equals the series:
L(x) = ((1-x) + x)*x +
((1-x)^2 + 2^2*x*(1-x) + x^2)*x^2/2 +
((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3)*x^3/3 +
((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4)*x^4/4 +
((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5)*x^5/5 +...
where exponentiation yields the g.f. of A216604:
exp(L(x)) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 19*x^8 + 33*x^9 + 59*x^10 + 102*x^11 + 181*x^12 +...+ A216604(n)*x^n +...
		

Crossrefs

Cf. A216604.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-Log[(1-x+Sqrt[(1-x)^2-4*x^3*(1-x)])/2],{x,0,20}],x]*Range[0,20]] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^(m-k) + x*O(x^n))), n)}
    
  • PARI
    {a(n)=n*polcoeff(log(2/(1-x+sqrt((1-x)^2-4*x^3*(1-x) +x*O(x^n)))), n)}
    for(n=1,40,print1(a(n),", "))

Formula

L.g.f.: -log( (1-x + sqrt((1-x)^2 - 4*x^3*(1-x)))/2 ).
a(n) ~ 2^n/sqrt(Pi*n). - Vaclav Kotesovec, Mar 06 2014

A216434 G.f. satisfies: A(x) = (1 + x*(2-x)*A(x)) * (1 + x^2*A(x)).

Original entry on oeis.org

1, 2, 4, 10, 27, 74, 208, 600, 1762, 5244, 15788, 48006, 147199, 454618, 1412960, 4416016, 13869998, 43756124, 138587784, 440523892, 1404849486, 4493472836, 14411800352, 46338611632, 149338703380, 482315951104, 1560824670460, 5060345244766, 16434480777703
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Comments

The radius of convergence of the g.f. A(x) is r = 1/(2+sqrt(2)) with A(r) = 2*(1+sqrt(2)).
More generally, if A(x) = (1 + x*(t-x)*A(x)) * (1 + x^2*A(x)), |t|>0, then
A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k) )
where the radius of convergence r of the g.f. A(x) satisfies
r = (1-r)^2/(t-r) = (1-t*r)/(2*(1-r)) with A(r) = 1/(r*(1-r)) = 2/(1-t*r).

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 27*x^4 + 74*x^5 + 208*x^6 + 600*x^7 +...
The logarithm of the g.f. begins:
log(A(x)) = ((2-x) + x)*x + ((2-x)^2 + 2^2*x*(2-x) + x^2)*x^2/2 +
((2-x)^3 + 3^2*x*(2-x)^2 + 3^2*x^2*(2-x) + x^3)*x^3/3 +
((2-x)^4 + 4^2*x*(2-x)^3 + 6^2*x^2*(2-x)^2 + 4^2*x^3*(2-x) + x^4)*x^4/4 +
((2-x)^5 + 5^2*x*(2-x)^4 + 10^2*x^2*(2-x)^3 + 10^2*x^3*(2-x)^2 + 5^2*x^4*(2-x) + x^5)*x^5/5 +...
Explicitly,
log(A(x)) = 2*x + 4*x^2/2 + 14*x^3/3 + 44*x^4/4 + 132*x^5/5 + 412*x^6/6 + 1318*x^7/7 + 4236*x^8/8 + 13676*x^9/9 + 44424*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 - 2*x) - Sqrt[(1 - 2*x)^2 - 4*x^3*(2 - x)])/(2*x^3*(2 - x)), {x,0,50}], x] (* G. C. Greubel, Feb 03 2017 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(2-x)^(m-k) + x*O(x^n)))),n)}
    
  • PARI
    {a(n)=polcoeff(2/(1-2*x+sqrt((1-2*x)^2-4*x^3*(2-x) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k*(2-x)^(n-k) ).
G.f.: ((1-2*x) - sqrt( (1-2*x)^2 - 4*x^3*(2-x) )) / (2*x^3*(2-x)).
Recurrence: 2*(n+3)*a(n) = 3*(3*n+5)*a(n-1) - 6*(2*n+1)*a(n-2) + 4*(5*n-6)*a(n-3) - 4*(4*n-9)*a(n-4) + 4*(n-3)*a(n-5). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ 2^(n/2 + 5/4) * (1+sqrt(2))^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 18 2013, simplified Jan 21 2023

A216454 G.f. satisfies: A(x) = (1 + x*(3-x)*A(x)) * (1 + x^2*A(x)).

Original entry on oeis.org

1, 3, 9, 30, 107, 396, 1503, 5820, 22907, 91371, 368523, 1500354, 6157669, 25448907, 105821865, 442409844, 1858482563, 7840766601, 33207750819, 141137445258, 601768494201, 2573246794374, 11032997250357, 47421297986868, 204286464525165, 881900059488741
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Comments

The radius of convergence of the g.f. A(x) is r = 2/(5+sqrt(17)) with A(r) = 2/(1-3*r) = (11+3*sqrt(17))/4.
More generally, if A(x) = (1 + x*(t-x)*A(x)) * (1 + x^2*A(x)), |t|>0, then
A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k) )
where the radius of convergence r of the g.f. A(x) satisfies
r = (1-r)^2/(t-r) = (1-t*r)/(2*(1-r)) with A(r) = 1/(r*(1-r)) = 2/(1-t*r).

Examples

			G.f.: A(x) = 1 + 3*x + 9*x^2 + 30*x^3 + 107*x^4 + 396*x^5 + 1503*x^6 +...
The logarithm of the g.f. begins:
log(A(x)) = ((3-x) + x)*x + ((3-x)^2 + 2^2*x*(3-x) + x^2)*x^2/2 +
((3-x)^3 + 3^2*x*(3-x)^2 + 3^2*x^2*(3-x) + x^3)*x^3/3 +
((3-x)^4 + 4^2*x*(3-x)^3 + 6^2*x^2*(3-x)^2 + 4^2*x^3*(3-x) + x^4)*x^4/4 +
((3-x)^5 + 5^2*x*(3-x)^4 + 10^2*x^2*(3-x)^3 + 10^2*x^3*(3-x)^2 + 5^2*x^4*(3-x) + x^5)*x^5/5 +...
Explicitly,
log(A(x)) = 3*x + 9*x^2/2 + 36*x^3/3 + 149*x^4/4 + 618*x^5/5 + 2592*x^6/6 + 11007*x^7/7 + 47181*x^8/8 + 203634*x^9/9 + 883674*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2/(1-3*x+Sqrt[(1-3*x)^2-4*x^3*(3-x)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(3-x)^(m-k) + x*O(x^n)))),n)}
    
  • PARI
    {a(n)=polcoeff(2/(1-3*x+sqrt((1-3*x)^2-4*x^3*(3-x) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(3-x)^(n-k) ).
G.f.: 2 / ( 1-3*x + sqrt( (1-3*x)^2 - 4*x^3*(3-x) ) ).
Recurrence: 3*(n+3)*a(n) = (19*n+30)*a(n-1) - 3*(11*n+3)*a(n-2) + 9*(5*n-6)*a(n-3) - 6*(4*n-9)*a(n-4) + 4*(n-3)*a(n-5). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ sqrt(7378+1794*sqrt(17)) * ((5+sqrt(17))/2)^n / (16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 17 2013

A216617 G.f. satisfies: A(x) = (1 + x*(1-x)*A(x)^2) * (1 + x^2*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 112, 351, 1130, 3716, 12424, 42101, 144277, 499136, 1740871, 6114629, 21609654, 76786625, 274171192, 983187372, 3539498904, 12787269117, 46345303727, 168463177245, 614002351108, 2243406499930, 8215549186628, 30149687633264, 110861650218443
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Comments

Apparently the number of Dyck paths of semilength n that avoid UUDUUD. The only Dyck path of semilength 4 that contains UUDUUD is UUDUUDdd. So a(4) = A000108(4)-1 = 13. - David Scambler, Apr 24 2013

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 37*x^5 + 112*x^6 + 351*x^7 +...
The logarithm of the g.f. begins:
log(A(x)) = ((1-x)*A(x) + x)*x + ((1-x)^2*A(x)^2 + 2^2*x*(1-x)*A(x) + x^2)*x^2/2 +
((1-x)^3*A(x)^3 + 3^2*x*(1-x)^2*A(x)^2 + 3^2*x^2*(1-x)*A(x) + x^3)*x^3/3 +
((1-x)^4*A(x)^4 + 4^2*x*(1-x)^3*A(x)^3 + 6^2*x^2*(1-x)^2*A(x)^2 + 4^2*x^3*(1-x)*A(x) + x^4)*x^4/4 +
((1-x)^5*A(x)^5 + 5^2*x*(1-x)^4*A(x)^4 + 10^2*x^2*(1-x)^3*A(x)^3 + 10^2*x^3*(1-x)^2*A(x)^2 + 5^2*x^4*(1-x)*A(x) + x^5)*x^5/5 +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 106*x^5/5 + 378*x^6/6 + 1359*x^7/7 + 4935*x^8/8 + 18073*x^9/9 + 66578*x^10/10 +...
		

Crossrefs

Programs

  • Maple
    a:= n->coeff(series(RootOf(A=(1+x*(1-x)*A^2)*(1+x^2*A), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 25 2013
  • Mathematica
    m = 30; A[_] = 0;
    Do[A[x_] = (1 + x (1 - x) A[x]^2) (1 + x^2 A[x]) + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*(1-x)*A^2)*(1+x^2*A) +x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^(m-k)*A^(m-k) +x*O(x^n)))));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k) * A(x)^(n-k) ).
Recurrence: (n+1)*(n+2)*(679*n^4 - 7380*n^3 + 23045*n^2 - 9120*n - 29484)*a(n) = (n+1)*(1358*n^5 - 14081*n^4 + 33259*n^3 + 60800*n^2 - 249924*n + 117936)*a(n-1) + (7469*n^6 - 81180*n^5 + 247067*n^4 - 13482*n^3 - 719746*n^2 + 667728*n - 176904)*a(n-2) - 2*(5432*n^6 - 67188*n^5 + 260696*n^4 - 210849*n^3 - 724651*n^2 + 1374444*n - 589500)*a(n-3) + 6*(1358*n^6 - 18834*n^5 + 89081*n^4 - 133447*n^3 - 140626*n^2 + 464272*n - 173424)*a(n-4) - 2*(9506*n^6 - 146097*n^5 + 784589*n^4 - 1442697*n^3 - 1099897*n^2 + 5950320*n - 4023900)*a(n-5) + 2*(6790*n^6 - 114540*n^5 + 682867*n^4 - 1465407*n^3 - 769658*n^2 + 6637308*n - 5733000)*a(n-6) + 2*(n-6)*(n-5)*(1358*n^4 - 10007*n^3 + 8773*n^2 + 34598*n - 27540)*a(n-7) - 4*(n-7)*(n-6)*(679*n^4 - 4664*n^3 + 4979*n^2 + 17546*n - 22260)*a(n-8). - Vaclav Kotesovec, Sep 16 2013
a(n) ~ c*d^n/n^(3/2), where d = 3.8781907052914131... is the root of the equation 4 + 4*d - 16*d^2 - 8*d^3 - 12*d^4 + d^6 = 0 and c = 0.561628033... - Vaclav Kotesovec, Sep 16 2013

A346074 a(n) = 1 + Sum_{k=0..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 59, 89, 136, 205, 301, 443, 664, 1011, 1545, 2341, 3530, 5341, 8143, 12487, 19148, 29299, 44817, 68721, 105742, 163025, 251392, 387595, 597988, 924047, 1430167, 2215595, 3433788, 5323915, 8260652, 12829849
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 44}]
    nmax = 44; A[] = 0; Do[A[x] = 1/(1 - x) + x^5 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x)^2.
Conjecture D-finite with recurrence (n+5)*a(n) +2*(-n-4)*a(n-1) +(n+3)*a(n-2) +2*(-2*n+5)*a(n-5) +4*(n-3)*a(n-6)=0. - R. J. Mathar, Feb 17 2022
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k,k) * Catalan(k). - Seiichi Manyama, Jan 22 2023

A360025 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k) * Catalan(k).

Original entry on oeis.org

1, 1, 1, 0, -1, -2, -1, 2, 7, 9, 3, -16, -39, -43, 9, 126, 247, 199, -213, -984, -1555, -756, 2525, 7518, 9593, 559, -24899, -56216, -55241, 33150, 225879, 407194, 273199, -529745, -1938549, -2822128, -833219, 6083986, 15904733, 18288966, -4172187, -61154333
Offset: 0

Views

Author

Seiichi Manyama, Jan 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)^2+4*x^3*(1-x))))

Formula

a(n) = 1 - Sum_{k=0..n-3} a(k) * a(n-k-3).
G.f. A(x) satisfies: A(x) = 1/(1-x) - x^3 * A(x)^2.
G.f.: 2 / ( 1-x + sqrt((1-x)^2 + 4*x^3*(1-x)) ).
D-finite with recurrence +(n+3)*a(n) +2*(-n-2)*a(n-1) +(n+1)*a(n-2) +2*(2*n-3)*a(n-3) +4*(-n+2)*a(n-4)=0. - R. J. Mathar, Jan 25 2023

A216447 G.f. satisfies: A(x) = (1 + x*(1-x)*A(x)^2) * (1 + x^2*A(x)^2).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 228, 841, 3181, 12277, 48156, 191400, 769168, 3120044, 12758080, 52533265, 217637308, 906511243, 3793989118, 15947205096, 67290484581, 284934164506, 1210374907352, 5156562941596, 22027291990432, 94325712634264, 404842107811880
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 228*x^6 + 841*x^7 +...
The logarithm of the g.f. begins:
log(A(x)) = ((1-x) + x)*x*A(x) + ((1-x)^2 + 2^2*x*(1-x) + x^2)*x^2*A(x)^2/2 +
((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3)*x^3*A(x)^3/3 +
((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4)*x^4*A(x)^4/4 +
((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 51*x^4/4 + 206*x^5/5 + 861*x^6/6 + 3641*x^7/7 + 15523*x^8/8 + 66676*x^9/9 +...+ L(n)*x^n/n +...
where L(n) = [x^n] ((1-x^4)/(1-x-x^3))^n.
		

Crossrefs

Programs

  • Mathematica
    nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x*(1-x)*AGF^2)*(1+x^2*AGF^2)-AGF,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 18 2013 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*(1-x)*A^2)*(1+x^2*A^2) +x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n+1,x^m*A^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^(m-k) +x*O(x^n)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=polcoeff(((1-x^4)/(1-x-x^3 +x*O(x^n)))^(n+1)/(n+1),n)}
    
  • PARI
    {a(n)=polcoeff((1/x)*serreverse(x*(1-x-x^3)/(1-x^4 +x^2*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k) ).
(2) A(x) = exp( Sum_{n>=1} L(n)*x^n/n ) where L(n) = [x^n] ((1-x^4)/(1-x-x^3))^n.
(3) A(x) = (1/x) * Series_Reversion( x*(1-x-x^3)/(1-x^4) ).
(4) A(x) = (1 - x^4*A(x)^4) / (1 - x*A(x) - x^3*A(x)^3).
(5) A( x*(1-x-x^3)/(1-x^4) ) = (1-x^4)/(1-x-x^3).
a(n) = [x^n] ((1-x^4)/(1-x-x^3))^(n+1) / (n+1).
Recurrence: 31*(n-1)*n*(n+1)*(877*n^4 - 9157*n^3 + 32799*n^2 - 48009*n + 24592)*a(n) = 2*(n-1)*n*(95593*n^5 - 1032316*n^4 + 3953542*n^3 - 6623680*n^2 + 4768887*n - 1162262)*a(n-1) - (n-1)*(402543*n^6 - 4844150*n^5 + 22130482*n^4 - 48931238*n^3 + 54934501*n^2 - 29672070*n + 6219456)*a(n-2) + 4*(143828*n^7 - 2089338*n^6 + 12282478*n^5 - 37816765*n^4 + 65573867*n^3 - 63612965*n^2 + 31782331*n - 6379188)*a(n-3) - 16*(n-3)*(49112*n^6 - 639080*n^5 + 3201244*n^4 - 7806610*n^3 + 9609821*n^2 - 5589051*n + 1241722)*a(n-4) + 64*(n-4)*(n-3)*(10524*n^5 - 108130*n^4 + 387266*n^3 - 581563*n^2 + 354497*n - 75516)*a(n-5) - 256*(n-5)*(n-4)*(n-3)*(877*n^4 - 5649*n^3 + 10590*n^2 - 6374*n + 1102)*a(n-6). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ c*d^n/n^(3/2), where d=4.54477579... is the root of the equation -256 + 512*d - 384*d^2 + 272*d^3 - 187*d^4 + 31*d^5 = 0 and c = 0.448853665050529472948816... - Vaclav Kotesovec, Aug 18 2013
Showing 1-10 of 14 results. Next