cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346073 a(n) = 1 + Sum_{k=0..n-4} a(k) * a(n-k-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 45, 73, 118, 185, 293, 475, 778, 1263, 2047, 3345, 5512, 9085, 14957, 24683, 40918, 67987, 113016, 188053, 313608, 524041, 876657, 1467797, 2460644, 4130893, 6942726, 11678687, 19663068, 33139295, 55904339, 94384167, 159470488
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 4], {k, 0, n - 4}]; Table[a[n], {n, 0, 42}]
    nmax = 42; A[] = 0; Do[A[x] = 1/(1 - x) + x^4 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Jan 22 2023
  • SageMath
    @CachedFunction
    def a(n): # a = A346073
        if (n<4): return 1
        else: return 1 + sum(a(k)*a(n-k-4) for k in range(n-3))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 26 2022
    

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^4 * A(x)^2.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * Catalan(k). - Seiichi Manyama, Jan 22 2023

A360027 a(n) = Sum_{k=0..floor(n/5)} (-1)^k * binomial(n-4*k,k) * Catalan(k).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, -1, -2, -3, -4, -3, 0, 5, 12, 21, 27, 25, 10, -23, -79, -149, -210, -225, -143, 101, 544, 1153, 1783, 2135, 1714, -81, -3735, -9263, -15724, -20603, -19490, -6485, 24242, 75307, 140955, 200891, 215530, 126527, -132122, -605687
Offset: 0

Views

Author

Seiichi Manyama, Jan 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (-1)^k*binomial(n-4*k, k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)^2+4*x^5*(1-x))))

Formula

a(n) = 1 - Sum_{k=0..n-5} a(k) * a(n-k-5).
G.f. A(x) satisfies: A(x) = 1/(1-x) - x^5 * A(x)^2.
G.f.: 2 / ( 1-x + sqrt((1-x)^2 + 4*x^5*(1-x)) ).
D-finite with recurrence (n+5)*a(n) 2*(-n-4)*a(n-1) +(n+3)*a(n-2) +2*(2*n-5)*a(n-5) +4*(-n+3)*a(n-6)=0. - R. J. Mathar, Jan 25 2023

A346077 a(n) = 1 + Sum_{k=1..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 12, 18, 26, 36, 49, 69, 101, 150, 221, 320, 460, 667, 981, 1456, 2161, 3191, 4698, 6932, 10283, 15324, 22870, 34103, 50813, 75770, 113229, 169590, 254340, 381579, 572537, 859511, 1291681, 1943489, 2926980, 4410709, 6649220, 10028570
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 5], {k, 1, n - 5}]; Table[a[n], {n, 0, 47}]
    nmax = 47; A[] = 0; Do[A[x] = 1/(1 - x) + x^5 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
  • SageMath
    @CachedFunction
    def a(n): # a = A346077
        if (n<6): return 1
        else: return 1 + sum(a(k)*a(n-k-5) for k in range(1,n-4))
    [a(n) for n in range(51)] # G. C. Greubel, Nov 27 2022

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^5 * A(x) * (A(x) - 1).
Showing 1-3 of 3 results.