A217661
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-x)^k.
Original entry on oeis.org
1, 1, 2, 6, 16, 42, 114, 314, 870, 2426, 6804, 19168, 54198, 153730, 437232, 1246480, 3560838, 10190810, 29212432, 83860176, 241051796, 693709896, 1998535892, 5763312876, 16635018146, 48054500898, 138923916700, 401908892716, 1163493516356, 3370283517032
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 42*x^5 + 114*x^6 + 314*x^7 + ...
where the g.f. equals the series:
A(x) = 1 +
x*(1 + x/(1-x)) +
x^2*(1 + 2^2*x/(1-x) + x^2/(1-x)^2) +
x^3*(1 + 3^2*x/(1-x) + 3^2*x^2/(1-x)^2 + x^3/(1-x)^3) +
x^4*(1 + 4^2*x/(1-x) + 6^2*x^2/(1-x)^2 + 4^2*x^3/(1-x)^3 + x^4/(1-x)^4) +
x^5*(1 + 5^2*x/(1-x) + 10^2*x^2/(1-x)^2 + 10^2*x^3/(1-x)^3 + 5^2*x^4/(1-x)^4 + x^5/(1-x)^5) + ...
-
CoefficientList[Series[(1-x)/Sqrt[1 - 4*x + 4*x^2 - 4*x^3 + 4*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 17 2014 *)
-
a(n):=sum(sum(binomial(m,k)^2*binomial(n-m-1,n-m-k),k,0,n-m),m,0,n);
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-x +x*O(x^n))^k )), n)}
for(n=0,40,print1(a(n),", "))
A217461
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(4-x)^(n-k).
Original entry on oeis.org
1, 4, 16, 72, 350, 1768, 9120, 47696, 251974, 1341560, 7186912, 38694000, 209187884, 1134838736, 6174666560, 33681995936, 184138474182, 1008642036184, 5534504908640, 30415064058160, 167378028670788, 922251663816368, 5087347689155264, 28091877168106592
Offset: 0
G.f.: A(x) = 1 + 4*x + 16*x^2 + 72*x^3 + 350*x^4 + 1768*x^5 +...
where the g.f. equals the series:
A(x) = 1 +
x*((4-x) + x) +
x^2*((4-x)^2 + 2^2*x*(4-x) + x^2) +
x^3*((4-x)^3 + 3^2*x*(4-x)^2 + 3^2*x^2*(4-x) + x^3) +
x^4*((4-x)^4 + 4^2*x*(4-x)^3 + 6^2*x^2*(4-x)^2 + 4^2*x^3*(4-x) + x^4) +
x^5*((4-x)^5 + 5^2*x*(4-x)^4 + 10^2*x^2*(4-x)^3 + 10^2*x^3*(4-x)^2 + 5^2*x^4*(4-x) + x^5) +...
-
CoefficientList[Series[1/Sqrt[(1-2*x+2*x^2)*(1-6*x+2*x^2)], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(4-x)^(m-k) + x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
A217616
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(2-x)^(n-k).
Original entry on oeis.org
1, 2, 4, 12, 38, 116, 360, 1144, 3670, 11836, 38392, 125160, 409628, 1345000, 4428752, 14618608, 48356838, 160260332, 532009688, 1768729736, 5888250996, 19626282328, 65489004464, 218743627408, 731311554044, 2447018357208, 8194289368240, 27459924376592
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 38*x^4 + 116*x^5 + 360*x^6 +...
where the g.f. equals the series:
A(x) = 1 +
x*((2-x) + x) +
x^2*((2-x)^2 + 2^2*x*(2-x) + x^2) +
x^3*((2-x)^3 + 3^2*x*(2-x)^2 + 3^2*x^2*(2-x) + x^3) +
x^4*((2-x)^4 + 4^2*x*(2-x)^3 + 6^2*x^2*(2-x)^2 + 4^2*x^3*(2-x) + x^4) +
x^5*((2-x)^5 + 5^2*x*(2-x)^4 + 10^2*x^2*(2-x)^3 + 10^2*x^3*(2-x)^2 + 5^2*x^4*(2-x) + x^5) +...
-
CoefficientList[Series[1/Sqrt[(1-2*x+2*x^2)^2-4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(2-x)^(m-k) + x*O(x^n))), n)}
for(n=0,40,print1(a(n),", "))
A385572
Number of subsets of {1..n} with the same number of maximal runs (increasing by 1) as maximal anti-runs (increasing by more than 1).
Original entry on oeis.org
1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 207, 394, 739, 1398, 2687, 5152, 9891, 19128, 37039, 71754, 139459, 271522, 528999, 1032308, 2017291, 3945186, 7723203, 15134440, 29679407, 58245068, 114389683, 224796210, 442021743, 869658304, 1711914351, 3371515306
Offset: 0
The set {2,3,5,6,8} has maximal runs ((2,3),(5,6),(8)) and maximal anti-runs ((2),(3,5),(6,8)) so is counted under a(8).
The a(0) = 1 through a(6) = 19 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{1,2,4} {5} {5}
{1,3,4} {1,2,4} {6}
{1,2,5} {1,2,4}
{1,3,4} {1,2,5}
{1,4,5} {1,2,6}
{2,3,5} {1,3,4}
{2,4,5} {1,4,5}
{1,5,6}
{2,3,5}
{2,3,6}
{2,4,5}
{2,5,6}
{3,4,6}
{3,5,6}
The case containing n + 1 is
A217615.
Subsets of this type are ranked by
A385575.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
a:= proc(n) option remember; `if`(n<5, [1, 2, 3, 4, 7][n+1], ((3*n-4)*a(n-1)-
(3*n-5)*a(n-2)+(5*n-12)*a(n-3)-2*(4*n-11)*a(n-4)+4*(n-3)*a(n-5))/(n-1))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jul 06 2025
-
Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2==#1+1&]]==Length[Split[#,#2!=#1+1&]]&]],{n,0,10}]
-
a(n)=polcoef([1,1,1]*[x,0,0;x,x^2,1;0,x,x]^n*[1,0,0]~,n) \\ Christian Sievers, Jul 06 2025
A217421
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^3 * x^k*(1-x)^(n-k).
Original entry on oeis.org
1, 1, 1, 7, 19, 37, 151, 541, 1477, 4999, 18277, 58651, 195001, 694747, 2380429, 8091223, 28449667, 99709057, 346212319, 1217144833, 4300487251, 15137730889, 53484426379, 189831062953, 673630230931, 2393381462941, 8527594750507, 30416413412917, 108577772050459
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 19*x^4 + 37*x^5 + 151*x^6 + 541*x^7 +...
where
A(x) = 1 +
x*((1-x) + x) +
x^2*((1-x)^2 + 2^3*x*(1-x) + x^2) +
x^3*((1-x)^3 + 3^3*x*(1-x)^2 + 3^3*x^2*(1-x) + x^3) +
x^4*((1-x)^4 + 4^3*x*(1-x)^3 + 6^3*x^2*(1-x)^2 + 4^3*x^3*(1-x) + x^4) +
x^5*((1-x)^5 + 5^3*x*(1-x)^4 + 10^3*x^2*(1-x)^3 + 10^3*x^3*(1-x)^2 + 5^3*x^4*(1-x) + x^5) +...
-
CoefficientList[Series[HypergeometricPFQ[{1/3, 2/3},{1},27*x^3/(1-x)^2]/(1-x), {x, 0, 30}], x] (* Vaclav Kotesovec, Dec 08 2021 *)
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^3*x^k*(1-x)^(m-k) + x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
A217617
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(3-x)^(n-k).
Original entry on oeis.org
1, 3, 9, 33, 133, 549, 2295, 9711, 41505, 178749, 774387, 3370995, 14733043, 64608555, 284143257, 1252749777, 5535201733, 24503713893, 108659076723, 482566381299, 2146042722591, 9555487997247, 42594294578949, 190060286569677, 848858809506279, 3794468370955587
Offset: 0
G.f.: A(x) = 1 + 3*x + 9*x^2 + 33*x^3 + 133*x^4 + 549*x^5 + 2295*x^6 +...
where the g.f. equals the series:
A(x) = 1 +
x*((3-x) + x) +
x^2*((3-x)^2 + 2^2*x*(3-x) + x^2) +
x^3*((3-x)^3 + 3^2*x*(3-x)^2 + 3^2*x^2*(3-x) + x^3) +
x^4*((3-x)^4 + 4^2*x*(3-x)^3 + 6^2*x^2*(3-x)^2 + 4^2*x^3*(3-x) + x^4) +
x^5*((3-x)^5 + 5^2*x*(3-x)^4 + 10^2*x^2*(3-x)^3 + 10^2*x^3*(3-x)^2 + 5^2*x^4*(3-x) + x^5) +...
-
CoefficientList[Series[1/Sqrt[(1-3*x+2*x^2)^2-4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2013 *)
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(3-x)^(m-k) + x*O(x^n))), n)}
for(n=0,40,print1(a(n),", "))
A383503
Expansion of 1/sqrt( (1-x) * (1-x-4*x^3)^3 ).
Original entry on oeis.org
1, 2, 3, 10, 23, 42, 97, 218, 435, 918, 1977, 4062, 8393, 17590, 36303, 74614, 154211, 317334, 650505, 1335054, 2736453, 5595950, 11439475, 23370270, 47681965, 97217882, 198110199, 403383026, 820820215, 1669405626, 3393344257, 6893850650, 13999109715, 28414742790
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/Sqrt( (1-x) * (1-x-4*x^3)^3 ))); // Vincenzo Librandi, May 06 2025
-
Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[n-2*k+1,k+1],{k,0,Floor[n/3]}],{n,0,35}] (* Vincenzo Librandi, May 06 2025 *)
-
a(n) = sum(k=0, n\3, (2*k+1)*binomial(2*k, k)*binomial(n-2*k+1, k+1));
A385575
Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.
Original entry on oeis.org
1, 2, 4, 8, 11, 13, 16, 19, 22, 25, 26, 32, 35, 38, 44, 49, 50, 52, 64, 67, 70, 76, 87, 88, 91, 93, 97, 98, 100, 104, 107, 109, 117, 128, 131, 134, 140, 151, 152, 155, 157, 167, 174, 176, 179, 182, 185, 186, 193, 194, 196, 200, 203, 205, 208, 211, 214, 217
Offset: 1
The terms together with their binary expansions and binary indices begin:
1: 1 ~ {1}
2: 10 ~ {2}
4: 100 ~ {3}
8: 1000 ~ {4}
11: 1011 ~ {1,2,4}
13: 1101 ~ {1,3,4}
16: 10000 ~ {5}
19: 10011 ~ {1,2,5}
22: 10110 ~ {2,3,5}
25: 11001 ~ {1,4,5}
26: 11010 ~ {2,4,5}
32: 100000 ~ {6}
35: 100011 ~ {1,2,6}
38: 100110 ~ {2,3,6}
44: 101100 ~ {3,4,6}
49: 110001 ~ {1,5,6}
50: 110010 ~ {2,5,6}
52: 110100 ~ {3,5,6}
64: 1000000 ~ {7}
67: 1000011 ~ {1,2,7}
70: 1000110 ~ {2,3,7}
76: 1001100 ~ {3,4,7}
87: 1010111 ~ {1,2,3,5,7}
88: 1011000 ~ {4,5,7}
91: 1011011 ~ {1,2,4,5,7}
93: 1011101 ~ {1,3,4,5,7}
97: 1100001 ~ {1,6,7}
98: 1100010 ~ {2,6,7}
100: 1100100 ~ {3,6,7}
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts
A384878.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&]
-
is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ Christian Sievers, Jul 18 2025
A383604
Expansion of 1/( (1-x)^2 * (1-x-9*x^3) )^(1/3).
Original entry on oeis.org
1, 1, 1, 4, 7, 10, 31, 70, 127, 328, 799, 1666, 4000, 9817, 22078, 52060, 126727, 296101, 699601, 1691350, 4024450, 9574393, 23081776, 55394488, 132650923, 319807159, 770872429, 1855190146, 4479086230, 10825202521, 26145137668, 63241928080, 153144714331
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/( (1-x)^2 * (1-x-9*x^3) )^(1/3))); // Vincenzo Librandi, May 06 2025
-
CoefficientList[Series[1/((1-x)^2*(1-x-9*x^3))^(1/3),{x,0,32}],x] (* Stefano Spezia, May 02 2025 *)
Table[Sum[(-9)^k*Binomial[-1/3,k]*Binomial[n-2*k,k],{k,0,Floor[n/3]}],{n,0,35}] (* Vincenzo Librandi, May 06 2025 *)
-
a(n) = sum(k=0, n\3, (-9)^k*binomial(-1/3, k)*binomial(n-2*k, k));
A385574
Number of integer partitions of n with the same number of adjacent equal parts as adjacent unequal parts.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 10, 11, 13, 17, 20, 30, 36, 44, 55, 70, 86, 98, 128, 156, 190, 235, 288, 351, 409, 499, 603, 722, 863, 1025, 1227, 1461, 1757, 2061, 2444, 2892, 3406, 3996, 4708, 5497, 6430, 7595, 8835, 10294, 12027, 13971, 16252, 18887, 21878
Offset: 0
The partition (5,3,2,1,1,1,1) has 4 runs ((5),(3),(2),(1,1,1,1)) and 4 anti-runs ((5,3,2,1),(1),(1),(1)) so is counted under a(14).
The a(1) = 1 through a(10) = 10 reversed partitions (A = 10):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A)
(112) (113) (114) (115) (116) (117) (118)
(122) (133) (224) (144) (226)
(223) (233) (225) (244)
(11123) (11124) (334)
(11223) (11125)
(11134)
(11224)
(11233)
(12223)
These partitions are ranked by
A385576.
Cf.
A000071,
A003114,
A008284,
A010027,
A047966,
A210034,
A325324,
A325325,
A356606,
A384882,
A384885.
-
Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union[#]]==Length[Split[#,#2!=#1&]]&]],{n,0,30}]
-
lista(n)=Vec(polcoef((prod(i=1,n,1+x^i/(t*(1-t*x^i))+O(x*x^n))-1)*t+1,0,t)) \\ Christian Sievers, Jul 18 2025
Showing 1-10 of 13 results.
Comments