A217615
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).
Original entry on oeis.org
1, 1, 1, 3, 5, 7, 15, 29, 49, 95, 187, 345, 659, 1289, 2465, 4739, 9237, 17911, 34715, 67705, 132063, 257477, 503309, 984983, 1927895, 3778017, 7411237, 14544967, 28565661, 56144615, 110406527, 217225533, 427636561, 842256047, 1659600955, 3271579689, 6451913519
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 15*x^6 + 29*x^7 + 49*x^8 + ...
where the g.f. equals the series:
A(x) = 1 +
x*((1-x) + x) +
x^2*((1-x)^2 + 2^2*x*(1-x) + x^2) +
x^3*((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3) +
x^4*((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4) +
x^5*((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5) + ...
-
a := n -> `if`(n < 4, [1, 1, 1, 3][n+1], hypergeom([1/2, (1-n)/3, (2-n)/3, -n/3], [1, (1-n)/2, -n/2], -27)):
seq(simplify(a(n)), n=0..36); # Peter Luschny, Oct 09 2019
-
CoefficientList[Series[1/Sqrt[(1-x+2*x^2)^2-4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2013 *)
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^(m-k) + x*O(x^n))), n)}
for(n=0,40,print1(a(n),", "))
-
a(n)={sum(k=0, n\2, binomial(2*k, k) * binomial(n-2*k, k))} \\ Andrew Howroyd, Oct 09 2019
A217665
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-3*x)^k.
Original entry on oeis.org
1, 1, 2, 8, 32, 122, 462, 1758, 6718, 25750, 98956, 381196, 1471678, 5693146, 22064296, 85655812, 333035302, 1296684130, 5055195944, 19731318068, 77098776372, 301561031472, 1180608808044, 4626045139116, 18140934734434, 71191952221114, 279576978531644
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 32*x^4 + 122*x^5 + 462*x^6 + 1758*x^7 +...
where the g.f. equals the series:
A(x) = 1 +
x*(1 + x/(1-3*x)) +
x^2*(1 + 2^2*x/(1-3*x) + x^2/(1-3*x)^2) +
x^3*(1 + 3^2*x/(1-3*x) + 3^2*x^2/(1-3*x)^2 + x^3/(1-3*x)^3) +
x^4*(1 + 4^2*x/(1-3*x) + 6^2*x^2/(1-3*x)^2 + 4^2*x^3/(1-3*x)^3 + x^4/(1-3*x)^4) +
x^5*(1 + 5^2*x/(1-3*x) + 10^2*x^2/(1-3*x)^2 + 10^2*x^3/(1-3*x)^3 + 5^2*x^4/(1-3*x)^4 + x^5/(1-3*x)^5) +...
-
CoefficientList[Series[(1-3*x)/Sqrt[(1-4*x)*(1 - 4*x + 4*x^2 - 4*x^3)], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 17 2014 *)
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-3*x +x*O(x^n))^k )), n)}
for(n=0,40,print1(a(n),", "))
A217664
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-2*x)^k.
Original entry on oeis.org
1, 1, 2, 7, 23, 72, 227, 725, 2332, 7537, 24465, 79720, 260633, 854539, 2808768, 9252315, 30536925, 100959558, 334301159, 1108483583, 3680134756, 12231824111, 40697552035, 135536687436, 451776392011, 1507088458381, 5031254413136, 16807872970501, 56185887793379
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 23*x^4 + 72*x^5 + 227*x^6 + 725*x^7 +...
where the g.f. equals the series:
A(x) = 1 +
x*(1 + x/(1-2*x)) +
x^2*(1 + 2^2*x/(1-2*x) + x^2/(1-2*x)^2) +
x^3*(1 + 3^2*x/(1-2*x) + 3^2*x^2/(1-2*x)^2 + x^3/(1-2*x)^3) +
x^4*(1 + 4^2*x/(1-2*x) + 6^2*x^2/(1-2*x)^2 + 4^2*x^3/(1-2*x)^3 + x^4/(1-2*x)^4) +
x^5*(1 + 5^2*x/(1-2*x) + 10^2*x^2/(1-2*x)^2 + 10^2*x^3/(1-2*x)^3 + 5^2*x^4/(1-2*x)^4 + x^5/(1-2*x)^5) +...
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-2*x +x*O(x^n))^k )), n)}
for(n=0,40,print1(a(n),", "))
A217666
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-4*x)^k.
Original entry on oeis.org
1, 1, 2, 9, 43, 198, 903, 4121, 18840, 86255, 395397, 1814662, 8337729, 38350063, 176574336, 813785593, 3753980313, 17332179596, 80089232683, 370370470791, 1714045215632, 7938075605697, 36787429315319, 170592514889814, 791557946825363, 3674974608196665
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 43*x^4 + 198*x^5 + 903*x^6 + 4121*x^7 +...
where the g.f. equals the series:
A(x) = 1 +
x*(1 + x/(1-4*x)) +
x^2*(1 + 2^2*x/(1-4*x) + x^2/(1-4*x)^2) +
x^3*(1 + 3^2*x/(1-4*x) + 3^2*x^2/(1-4*x)^2 + x^3/(1-4*x)^3) +
x^4*(1 + 4^2*x/(1-4*x) + 6^2*x^2/(1-4*x)^2 + 4^2*x^3/(1-4*x)^3 + x^4/(1-4*x)^4) +
x^5*(1 + 5^2*x/(1-4*x) + 10^2*x^2/(1-4*x)^2 + 10^2*x^3/(1-4*x)^3 + 5^2*x^4/(1-4*x)^4 + x^5/(1-4*x)^5) +...
-
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-4*x +x*O(x^n))^k )), n)}
for(n=0,40,print1(a(n),", "))
Showing 1-4 of 4 results.
Comments