cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140079 Numbers n such that n and n+1 have 5 distinct prime factors.

Original entry on oeis.org

254540, 310155, 378014, 421134, 432795, 483405, 486590, 486794, 488565, 489345, 507129, 522444, 545258, 549185, 558789, 558830, 567644, 577940, 584154, 591260, 598689, 627095, 634809, 637329, 663585, 666995, 667029, 678755, 687939, 690234
Offset: 1

Views

Author

Artur Jasinski, May 07 2008

Keywords

Comments

For the smallest number r such that r and r+1 have n distinct prime factors, see A093548.
Goldston, Graham, Pintz, & Yildirim prove that this sequence is infinite. - Charles R Greathouse IV, Jun 02 2016
Subsequence of the variant A321505 defined with "at least 5" instead of "exactly 5" distinct prime factors. See A321495 for the differences. - M. F. Hasler, Nov 12 2018
The subset of numbers where n and n+1 are also squarefree gives A318964. - R. J. Mathar, Jul 15 2023

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Length[FactorInteger[n]] == 5 && Length[FactorInteger[n + 1]] == 5, AppendTo[a, n]], {n, 1, 100000}]; a (*Artur Jasinski*)
    Transpose[SequencePosition[Table[If[PrimeNu[n]==5,1,0],{n,700000}],{1,1}]][[1]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Jul 25 2015 *)
  • PARI
    is(n)=omega(n)==5 && omega(n+1)==5 \\ Charles R Greathouse IV, Jun 02 2016

Formula

{k: k in A051270 and k+1 in A051270}. - R. J. Mathar, Jul 19 2023

A273898 Sum of the abscissae of the first descents of all bargraphs of semiperimeter n (n>=2).

Original entry on oeis.org

1, 3, 9, 27, 81, 244, 739, 2251, 6895, 21232, 65703, 204245, 637573, 1997892, 6282635, 19820580, 62716923, 198997349, 633015543, 2018391204, 6449819095, 20652628601, 66256638509, 212939343591, 685497649231, 2210217592624, 7136781993563, 23076554161563
Offset: 2

Views

Author

Emeric Deutsch, Jun 06 2016

Keywords

Comments

A descent in a bargraph is a maximal sequence of adjacent down steps.

Examples

			a(4)=9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding pictures give the values 3,2,1,2,1 for the abscissae of their first descents.
		

Crossrefs

Programs

  • Maple
    g := ((1-4*z+3*z^2-(1-2*z)*Q)*(1/2))/z^3: Q := sqrt(1-4*z+2*z^2+z^4): gser := series(g,z = 0,40): seq(coeff(gser, z, n), n = 2 .. 35);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
         ((2*(14*n^2+6+13*n))*a(n-1)-(2*(7*n^2-6-4*n))*a(n-2)
         +12*a(n-3) -(n-4)*(3+7*n)*a(n-4))/((n+3)*(7*n-4)))
        end:
    seq(a(n), n=2..40);  # Alois P. Heinz, Jun 07 2016
  • Mathematica
    a[n_] := a[n] = If[n<4, {0, 0, 1, 3}[[n+1]], ((2*(14*n^2+6+13*n))*a[n-1] - (2*(7*n^2-6-4*n))*a[n-2] + 12*a[n-3] - (n-4)*(3+7*n)*a[n-4])/((n+3)*(7*n - 4))]; Table[a[n], {n, 2, 40}] (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)

Formula

G.f.: g(z)=(1-4z+3z^2-(1-2z)Q)/(2z^3), where Q = sqrt(1-4z+2z^2+z^4).
a(n) = Sum(k*A273897(n,k), k>=1).
a(n) = A082582(n+2)-2*A082582(n+1).
D-finite with recurrence (n+3)*a(n) +2*(-3*n-4)*a(n-1) +2*(5*n-2)*a(n-2) +4*(-n+2)*a(n-3) +(n-3)*a(n-4) +2*(-n+5)*a(n-5)=0. - R. J. Mathar, Jul 24 2022
Showing 1-2 of 2 results.