A105657
Numbers n such that p1=2n+3, p2=4n+5, p3=6n+7, p4=8n+9, p5=10n+11, p6=12n+13, p7=14n+15 and p8=16n+17 are all prime.
Original entry on oeis.org
256409, 11120339, 13243229, 49798979, 296504669, 510578774, 520649219, 640598279, 674992499, 713074004, 830453714, 947378984
Offset: 1
A105655
Numbers k such that p1=2k+3, p2=4k+5, p3=6k+7, p4=8k+9, p5=10k+11 and p6=12k+13 are all prime.
Original entry on oeis.org
12704, 13019, 105524, 256409, 966839, 1707509, 1944494, 2309999, 2478629, 3132674, 3836069, 3976769, 4112429, 4532324, 5499584, 5920004, 6610484, 7390844, 8552249, 10739504, 11120339, 12231449, 12338129, 13243229, 16467254
Offset: 1
-
[n: n in [0..10000000]|IsPrime(2*n+3) and IsPrime(4*n+5) and IsPrime(6*n+7) and IsPrime(8*n+9) and IsPrime(10*n+11)and IsPrime(12*n+13)] // Vincenzo Librandi, Dec 16 2010
-
With[{r1=Range[2,12,2],r2=Range[3,13,2]},Select[Range[16500000],And@@PrimeQ[# r1+r2]&]] (* Harvey P. Dale, Jan 31 2011 *)
Showing 1-2 of 2 results.