cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105696 Expansion of (1-x)/sqrt((1-3*x)/(1+x)).

Original entry on oeis.org

1, 1, 2, 6, 16, 44, 122, 342, 966, 2746, 7846, 22514, 64836, 187288, 542438, 1574666, 4580400, 13347324, 38956182, 113861922, 333226560, 976353876, 2863756158, 8407877394, 24707200854, 72663608178, 213864889770, 629893319902
Offset: 0

Views

Author

Paul Barry, Apr 17 2005

Keywords

Comments

Apply the Riordan array (1-x,x/(1+x)) to C(2n,n).

Crossrefs

Cf. A002426.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)/Sqrt[(1-3x)/(1+x)],{x,0,30}],x] (* Harvey P. Dale, Feb 12 2016 *)
  • PARI
    x='x+O('x^50); Vec((1-x)/sqrt((1-3*x)/(1+x))) \\ G. C. Greubel, Mar 02 2017

Formula

a(n) = A002426(n) - A002426(n-2).
a(n) = Sum_{k=0..floor(n/2)} ( 2*C(n-2, k)*C(n-k, k) ) - C(1, n).
Conjecture D-finite with recurrence: n*a(n) +(-3*n+2)*a(n-1) +(-n+2)*a(n-2) +3*(n-4)*a(n-3)=0. - R. J. Mathar, Jan 22 2020
a(n) ~ 4 * 3^(n - 3/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 19 2021