cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A025565 a(n) = T(n,n-1), where T is array defined in A025564.

Original entry on oeis.org

1, 2, 4, 10, 26, 70, 192, 534, 1500, 4246, 12092, 34606, 99442, 286730, 829168, 2403834, 6984234, 20331558, 59287740, 173149662, 506376222, 1482730098, 4346486256, 12754363650, 37461564504, 110125172682, 323990062452, 953883382354
Offset: 1

Views

Author

Keywords

Comments

a(n+1) is the number of UDU-free paths of n upsteps (U) and n downsteps (D), n>=0. - David Callan, Aug 19 2004
Hankel transform is A120580. - Paul Barry, Mar 26 2010
If interpreted with offset 0, the inverse binomial transform of A006134 - Gary W. Adamson, Nov 10 2007
Also the number of different integer sets { k_1, k_2, ..., k_(i+1) } with Sum_{j=1..i+1} k_j = i and k_j >= 0, see the "central binomial coefficients" (A000984), without all sets in which any two successive k_j and k_(j+1) are zero. See the partition problem eq. 3.12 on p. 19 in my dissertation below. - Eva Kalinowski, Oct 18 2012

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 70*x^6 + 192*x^7 + 534*x^8 + ...
		

Crossrefs

First column of A097692.
Partial sums of A105696.

Programs

  • Haskell
    a025565 n = a025565_list !! (n-1)
    a025565_list = 1 : f a001006_list [1] where
       f (x:xs) ys = y : f xs (y : ys) where
         y = x + sum (zipWith (*) a001006_list ys)
    -- Reinhard Zumkeller, Mar 30 2012
    
  • Maple
    seq( add(binomial(i-2, k)*(binomial(i-k, k+1)), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    # Alternatively:
    a := n -> `if`(n=1,1,2*(-1)^n*hypergeom([3/2, 2-n], [2], 4)):
    seq(simplify(a(n)),n=1..28); # Peter Luschny, Jan 30 2017
  • Mathematica
    T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0;
    a[n_] := T[n-1, n-1];
    Array[a, 30] (* Jean-François Alcover, Jul 30 2018 *)
  • Sage
    def A():
        a, b, n  = 1, 1, 1
        yield a
        while True:
            yield a + b
            n += 1
            a, b = b, ((3*(n-1))*a+(2*n-1)*b)//n
    A025565 = A()
    print([next(A025565) for  in range(28)]) # _Peter Luschny, Jan 30 2017

Formula

G.f.: x*sqrt((1+x)/(1-3*x)).
a(n) = 2*A005773(n-1) for n > 1.
a(n) = |A085455(n-1)| = A025577(n) - A025577(n-1) = A002426(n) + A002426(n-1).
Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*a(j)*a(i-j) = 3^n. - Mario Catalani (mario.catalani(AT)unito.it), Jul 02 2003
a(1) = 1, a(n) = M(n-1) + Sum_{k=1..n-1} M(k-1)*a(n-k) with M=A001006, the Motzkin Numbers. - Reinhard Zumkeller, Mar 30 2012
D-finite with recurrence: (-n+1)*a(n) +2*(n-1)*a(n-1) +3*(n-3)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
G.f.: G(0), where G(k) = 1 + 4*x*(4*k+1)/( (1+x)*(4*k+2) - x*(1+x)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1+x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) = n*hypergeom([2-n, 1/2-n/2, 1-n/2], [2, -n], 4). - Peter Luschny, Jul 12 2016
a(n) = (-1)^n*2*hypergeom([3/2, 2-n], [2], 4) for n > 1. - Peter Luschny, Jan 30 2017

Extensions

Incorrect statement related to A000984 (see A002426) and duplicate of the g.f. removed by R. J. Mathar, Oct 16 2009
Edited by R. J. Mathar, Aug 09 2010

A025178 First differences of the central trinomial coefficients A002426.

Original entry on oeis.org

0, 2, 4, 12, 32, 90, 252, 714, 2032, 5814, 16700, 48136, 139152, 403286, 1171380, 3409020, 9938304, 29017878, 84844044, 248382516, 727971360, 2135784798, 6272092596, 18435108258, 54228499920, 159636389850, 470256930052, 1386170197704
Offset: 1

Views

Author

Keywords

Comments

Previous name was: "a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0 = s(n), |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n), where T is the array defined in A025177."
Note that n-1 divides a(n) for n>=2. - T. D. Noe, Mar 16 2005

Crossrefs

Programs

  • Maple
    a := n -> 2*(n-1)*hypergeom([1-n/2, 3/2-n/2], [2], 4):
    seq(simplify(a(n)), n=1..28); # Peter Luschny, Oct 29 2015
  • Mathematica
    Rest[Differences[CoefficientList[Series[x/Sqrt[1-2x-3x^2],{x,0,30}],x]]] (* Harvey P. Dale, Aug 22 2011 *)
    Differences[Table[Hypergeometric2F1[(1-n)/2,1-n/2,1,4],{n,1,29}]] (* Peter Luschny, Nov 03 2015 *)
  • PARI
    a(n) = sum(k=1, n\2, binomial(n-1,2*k-1)*binomial(2*k,k)); \\ Altug Alkan, Oct 29 2015
    
  • Sage
    def a():
        b, c, n = 0, 2, 2
        yield b
        while True:
            yield c
            b, c = c, ((2*n-1)*c+3*(n-1)*b)*n//((n+1)*(n-1))
            n += 1
    A025178 = a()
    print([next(A025178) for  in (1..20)]) # _Peter Luschny, Nov 04 2015

Formula

a(n) = T(n,n) for n>=1, where T is the array defined in A025177.
a(n) = A002426(n+1) - A002426(n). - Benoit Cloitre, Nov 02 2002
a(n) is asymptotic to c*3^n/sqrt(n) with c around 1.02... - Benoit Cloitre, Nov 02 2002
a(n) = 2*(n-1)*A001006(n-2). - M. F. Hasler, Oct 24 2011
a(n) = 2*A005717(n-1). - R. J. Mathar, Jul 09 2012
E.g.f. Integral(Integral(2*exp(x)*((1-1/x)*BesselI(1,2*x) + 2*BesselI(0,2*x)))). - Sergei N. Gladkovskii, Aug 16 2012
G.f.: -1/x + (1/x-1)/sqrt(1-2*x-3*x^2). - Sergei N. Gladkovskii, Aug 16 2012
D-finite with recurrence: a(n) = ((2+n)*a(n-2)+3*(3-n)*a(n-3)+3*(n-1)*a(n-1))/n, a(0)=1, a(1)=0, a(2)=2. - Sergei N. Gladkovskii, Aug 16 2012 [adapted to new offset by Peter Luschny, Nov 04 2015]
G.f.: (1-x)/x^2*G(0) - 1/x^2 , where G(k)= 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013
From Peter Bala, Oct 28 2015: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(n-1,2*k-1)*binomial(2*k,k). Cf. A097893.
n*(n-2)*a(n) = (2*n-3)*(n-1)*a(n-1) + 3*(n-1)*(n-2)*a(n-2) with a(1) = 0, a(2) = 2. (End)
From Peter Luschny, Oct 29 2015: (Start)
a(n) = 2*(n-1)*hypergeom([1-n/2,3/2-n/2],[2],4).
a(n) = (n-1)!*[x^(n-1)](2*exp(x)*BesselI(1,2*x)).
a(n) = (n-1)*A007971(n) for n>=2.
A105696(n) = a(n-1) + a(n) for n>=2.
A162551(n-2) = (1/2)*Sum_{k=1..n} binomial(n,k)*a(k) for n>=2.
A079309(n) = (1/2)*Sum_{k=1..2*n} (-1)^k*binomial(2*n,k)*a(k) for n>=1.
(End)

Extensions

New name based on a comment by T. D. Noe, Mar 16 2005, offset set to 1 and a(1) = 0 prepended by Peter Luschny, Nov 04 2015

A151798 a(0)=1, a(1)=2, a(n)=4 for n>=2.

Original entry on oeis.org

1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

David Applegate, Jun 29 2009

Keywords

Comments

A010709 preceded by 1, 2.
Partial sums give A131098.
The INVERT transform gives A077996 without A077996(0). The Motzkin transform gives A105696 without A105696(0). Decimal expansion of 28/225=0.12444... . - R. J. Mathar, Jun 29 2009
Continued fraction expansion of 1 + sqrt(1/5). - Arkadiusz Wesolowski, Mar 30 2012
The number of solutions x (mod 2^(n+1)) of x^2 = 1 (mod 2^(n+1)), namely x = 1 (n=0), x = -1, 1 (n=1) and x = -1, 1, 2^n-1, 2^n+1 (n at least 2). - Christopher J. Smyth, May 15 2014
Also, the number of n-step self-avoiding walks on the L-lattice with no non-contiguous adjacencies (see A322419 for details of L-lattice). - Sean A. Irvine, Jul 29 2020

Crossrefs

Programs

  • Magma
    [ n le 1 select n+1 else 4: n in [0..104] ];
    
  • Mathematica
    f[n_] := Fold[#2*Floor[#1/#2 + 1/2] &, n, Reverse@ Range[n - 1]]; Array[f, 55]
  • PARI
    Vec((1+x+2*x^2)/(1-x) + O(x^100)) \\ Altug Alkan, Jan 19 2016

Formula

G.f.: (1+x+2*x^2)/(1-x).
E.g.f. A(x)=x*B(x) satisfies the differential equation B'(x)=1+x+x^2+B(x). - Vladimir Kruchinin, Jan 19 2011
E.g.f.: 4*exp(x) - 2*x - 3. - Elmo R. Oliveira, Aug 06 2024

A322116 Main diagonal of triangle A321600; a(n) = A321600(n,n-1) for n >= 1.

Original entry on oeis.org

2, 6, 26, 78, 242, 726, 2186, 6558, 19682, 59046, 177146, 531438, 1594322, 4782966, 14348906, 43046718, 129140162, 387420486, 1162261466, 3486784398, 10460353202, 31381059606, 94143178826, 282429536478, 847288609442, 2541865828326, 7625597484986, 22876792454958, 68630377364882, 205891132094646, 617673396283946, 1853020188851838, 5559060566555522, 16677181699666566
Offset: 1

Views

Author

Paul D. Hanna, Nov 26 2018

Keywords

Comments

Triangle A321600 describes log( (1-y)*Sum_{n=-oo...+oo} (x^n + y)^n )/(1-y).

Examples

			G.f.: A(x) = 2*x + 6*x^2 + 26*x^3 + 78*x^4 + 242*x^5 + 726*x^6 + 2186*x^7 + 6558*x^8 + 19682*x^9 + 59046*x^10 + ...
L.g.f.: L(x)  =  log( (1-x)*(1-x^2)/(1-3*x) )  =  2*x + 6*x^2/2 + 26*x^3/3 + 78*x^4/4 + 242*x^5/5 + 726*x^6/6 + 2186*x^7/7 + 6558*x^8/8 + 19682*x^9/9 + 59046*x^10/10 + 177146*x^11/11 + ... + A321600(n,n-1)*x^n/n + ...
such that
exp(L(x)) = 1 + 2*x + 5*x^2 + 16*x^3 + 48*x^4 + 144*x^5 + 432*x^6 + 1296*x^7 + 3888*x^8 + 11664*x^9 + 34992*x^10 + 104976*x^11 + ... + A257970(n)*x^n + ...
exp(L(x)/2) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 44*x^5 + 122*x^6 + 342*x^7 + 966*x^8 + 2746*x^9 + 7846*x^10 + 22514*x^11 + 64836*x^12 + ... + A105696(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = n*polcoeff( log((1 - x)*(1 - x^2)/(1 - 3*x +x*O(x^n))),n)}
    for(n=1,40,print1(a(n),", "))

Formula

L.g.f.: log( (1 - x)*(1 - x^2)/(1 - 3*x) ).
G.f.: 2*x*(1 + 3*x^2)/((1 - x^2)*(1 - 3*x)).
Showing 1-4 of 4 results.