A105728 Triangle read by rows: T(n,1) = 1, T(n,n) = n and for 1 < k < n: T(n,k) = T(n-1,k-1) + 2*T(n-1,k).
1, 1, 2, 1, 5, 3, 1, 11, 11, 4, 1, 23, 33, 19, 5, 1, 47, 89, 71, 29, 6, 1, 95, 225, 231, 129, 41, 7, 1, 191, 545, 687, 489, 211, 55, 8, 1, 383, 1281, 1919, 1665, 911, 321, 71, 9, 1, 767, 2945, 5119, 5249, 3487, 1553, 463, 89, 10, 1, 1535, 6657, 13183, 15617, 12223, 6593, 2479, 641, 109, 11
Offset: 1
Examples
Triangle begins as: 1; 1, 2; 1, 5, 3; 1, 11, 11, 4; 1, 23, 33, 19, 5; 1, 47, 89, 71, 29, 6; ...
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Programs
-
Haskell
a105728 n k = a105728_tabl !! (n-1) !! (k-1) a105728_row n = a105728_tabl !! (n-1) a105728_tabl = iterate (\row -> zipWith (+) ([0] ++ tail row ++ [1]) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Reinhard Zumkeller, Jul 22 2013
-
Magma
function T(n,k) if k eq 1 then return 1; elif k eq n then return n; else return T(n-1,k-1) + 2*T(n-1,k); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 13 2019
-
Maple
T:= proc(n, k) option remember; if k=1 then 1 elif k=n then n else T(n-1, k-1) + 2*T(n-1, k) fi end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 13 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, n, T[n-1, k-1] + 2*T[n-1, k]]]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==1): return 1 elif (k==n): return n else: return T(n-1,k-1) + 2*T(n-1, k) [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 13 2019
Comments