cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105849 Row sums of number triangle A105848.

Original entry on oeis.org

1, 3, 9, 28, 91, 308, 1079, 3888, 14332, 53810, 205075, 791250, 3084504, 12129506, 48056095, 191633546, 768535768, 3097705378, 12541851048, 50983349848, 208003171266, 851412895348, 3495527318559, 14390543072502, 59393240482618
Offset: 0

Views

Author

Paul Barry, Apr 22 2005

Keywords

Comments

Binomial transform of A105633.

Formula

G.f.: (1-2x-sqrt((1-6x+8x^2-4x^3)/(1-2x)))/(2x^2).
Conjecture: (n+2)*a(n) +2*(-4*n-3)*a(n-1) +4*(5*n-2)*a(n-2) +2*(-10*n+17)*a(n-3) +8*(n-3)*a(n-4)=0. - R. J. Mathar, Nov 16 2012

A096465 Triangle (read by rows) formed by setting all entries in the first column and in the main diagonal ((i,i) entries) to 1 and the rest of the entries by the recursion T(n, k) = T(n-1, k) + T(n, k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 8, 9, 1, 1, 5, 13, 22, 23, 1, 1, 6, 19, 41, 64, 65, 1, 1, 7, 26, 67, 131, 196, 197, 1, 1, 8, 34, 101, 232, 428, 625, 626, 1, 1, 9, 43, 144, 376, 804, 1429, 2055, 2056, 1, 1, 10, 53, 197, 573, 1377, 2806, 4861, 6917, 6918, 1, 1, 11, 64, 261, 834, 2211, 5017, 9878, 16795, 23713, 23714, 1
Offset: 0

Views

Author

Gerald McGarvey, Aug 12 2004

Keywords

Comments

The third column is A034856 (binomial(n+1, 2) + n-1).
The row sums are A014137 (partial sums of Catalan numbers (A000108)).
The "1st subdiagonal" ((i+1,i) entries) are also A014137.
The "2nd subdiagonal" ((i+2,i) entries) is A014138 ( Partial sums of Catalan numbers (starting 1,2,5,...)).
The "3rd subdiagonal" ((i+3,i) entries) is A001453 (Catalan numbers - 1.)
This is the reverse of A091491 - see A091491 for more information. The sequence of antidiagonal sums gives A124642. - Gerald McGarvey, Dec 09 2006

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  4,  1;
  1, 4,  8,  9,   1;
  1, 5, 13, 22,  23,   1;
  1, 6, 19, 41,  64,  65,   1;
  1, 7, 26, 67, 131, 196, 197, 1;
		

Crossrefs

Programs

  • Haskell
    a096465 n k = a096465_tabl !! n !! k
    a096465_row n = a096465_tabl !! n
    a096465_tabl = map reverse a091491_tabl
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    A096465:= func< n,k | k eq n select 1 else (n-k)*(&+[Binomial(n+k-2*j, n-j)/(n+k-2*j): j in [0..k]]) >;
    [A096465(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 30 2021
    
  • Maple
    A096465:= (n,k)-> `if`(k=n, 1, (n-k)*add(binomial(n+k-2*j, n-j)/(n+k-2*j), j=0..k));
    seq(seq(A096465(n,k), k=0..n), n=0..12) # G. C. Greubel, Apr 30 2021
  • Mathematica
    T[, 0]= 1; T[n, n_]= 1; T[n_, m_]:= T[n, m]= T[n-1, m] + T[n, m-1]; T[n_, m_] /; n < 0 || m > n = 0; Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* Jean-François Alcover, Dec 17 2012 *)
  • Sage
    def A096465(n,k): return 1 if (k==n) else (n-k)*sum( binomial(n+k-2*j, n-j)/(n+k-2*j) for j in (0..k))
    flatten([[A096465(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 30 2021

Formula

From G. C. Greubel, Apr 30 2021: (Start)
T(n, k) = (n-k) * Sum_{j=0..k} binomial(n+k-2*j, n-j)/(n+k-2*j) with T(n,n) = 1.
T(n, k) = A091491(n, n-k).
Sum_{k=0..n} T(n,k) = Sum_{j=0..n} A000108(j) = A014137(n). (End)

Extensions

Offset changed by Reinhard Zumkeller, Jul 12 2012

A124642 Antidiagonal sums of A096465.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 29, 50, 99, 176, 351, 638, 1275, 2354, 4707, 8789, 17577, 33099, 66197, 125477, 250953, 478193, 956385, 1830271, 3660541, 7030571, 14061141, 27088871, 54177741, 104647631, 209295261, 405187826, 810375651, 1571990936, 3143981871, 6109558586, 12219117171, 23782190486, 47564380971, 92705454896
Offset: 0

Views

Author

Gerald McGarvey, Dec 21 2006

Keywords

Comments

Apparently bisections give A024718 and A006134 and are related to A078478, A100066 and A105848.

Crossrefs

Programs

  • Magma
    a:= func< n | n eq 0 select 1 else (1+(-1)^n)/2 + (&+[ (&+[ ((n-2*j)/(n-2*k))*Binomial(n-2*k, n-k-j) : k in [0..j]]) : j in [0..Floor((n-1)/2)]]) >;
    [a(n): n in [0..45]]; // G. C. Greubel, Apr 30 2021
    
  • Mathematica
    a[, 0]=1; a[n, n_]=1; a[n_, m_]:= a[n, m] = a[n-1, m] + a[n, m-1]; a[n_, m_] /; n<0 || m>n = 0; Table[ Sum[a[n-m, m], {m,0,n}], {n,0,45}] (* Jean-François Alcover, Dec 17 2012 *)
    a[n_]:= a[n]= (1+(-1)^n)/2 + Sum[(n-2*j)*Binomial[n-2*k, n-k-j]/(n-2*k), {j,0,(n-1)/2}, {k,0,j}]; Table[a[n], {n,0,45}] (* G. C. Greubel, Apr 30 2021 *)
  • Sage
    def a(n): return (1+(-1)^n)/2 + sum( sum( ((n-2*j)/(n-2*k))*binomial(n-2*k, n-k-j) for k in (0..j)) for j in (0..(n-1)//2))
    [a(n) for n in (0..45)] # G. C. Greubel, Apr 30 2021

Formula

Conjecture: G.f.: -(1/2)*z*(2*z+(1-4*z^2)^(1/2)+1)/(1-4*z^2)^(1/2)/(z^2-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
From G. C. Greubel, Apr 30 2021: (Start)
a(n) = (1 + (-1)^n)/2 + Sum_{j=0..floor((n-1)/2)} Sum_{k=0..j} (n-2*j)*binomial(n -2*k, n-k-j)/(n-2*k).
a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} ((n-2*j)/(n-k-j))*binomial(n-2*k, n-k-j). (End)

Extensions

Offset changed by Reinhard Zumkeller, Jul 12 2012
Terms a(18) onward added by G. C. Greubel, Apr 30 2021
Showing 1-3 of 3 results.