A105851 Binomial transform triangle, read by rows.
1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 20, 12, 5, 1, 32, 48, 32, 16, 6, 1, 64, 112, 80, 44, 20, 7, 1, 128, 256, 192, 112, 56, 24, 8, 1, 256, 576, 448, 272, 144, 68, 28, 9, 1, 512, 1280, 1024, 640, 352, 176, 80, 32, 10, 1, 1024, 2816, 2304, 1472, 832, 432, 208, 92, 36, 11, 1
Offset: 0
Examples
Column 3: 1, 5, 16, 44, 112, ... (A053220) is the binomial transform of 3k+1 (A016777: 1, 4, 7, ...). Triangle begins: 1; 2, 1; 4, 3, 1; 8, 8, 4, 1; 16, 20, 12, 5, 1; 32, 48, 32, 16, 6, 1; 64, 112, 80, 44, 20, 7, 1; 128, 256, 192, 112, 56, 24, 8, 1; 256, 576, 448, 272, 144, 68, 28, 9, 1; 512, 1280, 1024, 640, 352, 176, 80, 32, 10, 1; 1024, 2816, 2304, 1472, 832, 432, 208, 92, 36, 11, 1; ...
Programs
-
Magma
/* As triangle */ [[(2+k*(n-k))*2^(n-k-1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 26 2015
-
Maple
seq(seq((2 + k*(n - k))*2^(n-k-1),k=0..n),n=0..10); # Peter Bala, Jul 26 2015
-
Mathematica
t[n_, k_]:=(2 + k (n - k)) 2^(n - k - 1); Table[t[n - 1, k - 1], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jul 26 2015 *)
Formula
n-th column of the triangle is the binomial transform of the arithmetic sequence (n*k + 1), (k = 0, 1, 2, ...).
From Peter Bala, Jul 26 2015: (Start)
T(n,k) = (2 + k*(n - k))*2^(n-k-1) for 0 <= k <= n.
O.g.f.: (1 - x*(2 + t) + 3*t*x^2)/((1 - 2*x)^2*(1 - t*x)^2) = 1 + (2 + t)*x + (4 + 3*t + t^2)*x^2 + ....
k-th column g.f.: (1 + (k - 2)*x)/(1 - 2*x)^2. Cf. A077028. (End)
Extensions
More terms from Philippe Deléham, Mar 31 2007
Comments