cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105944 a(n) = binomial(n+8,n)*binomial(n+11,8).

Original entry on oeis.org

165, 4455, 57915, 495495, 3185325, 16563690, 73002930, 281582730, 972740340, 3062330700, 8904315420, 24168856140, 61764854580, 149660993790, 345855237750, 766005304350, 1632800780325, 3361648665375, 6705510829875, 12993932469375, 24518985616125
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+8,0)*C(0+11,8) = C(8,0)*C(11,8) = 1*165 = 165.
If n=4 then C(4+8,4)*C(4+11,8) = C(12,4)*C(15,8) = 495*6435 = 3185325.
		

Crossrefs

Programs

  • Magma
    A105944:= func< n | Binomial(n+8,8)*Binomial(n+11,8) >;
    [A105944(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Mathematica
    Table[Binomial[n+8,n]Binomial[n+11,8],{n,0,30}] (* Harvey P. Dale, Apr 26 2018 *)
  • SageMath
    def A105994(n): return binomial(n+8,8)*binomial(n+11,8)
    print([A105994(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

G.f.: 165*(1+x)*(1+9*x+19*x^2+9*x^3+x^4)/(1-x)^17. - Colin Barker, Jan 28 2013
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 1493776559/14175 - 32032*Pi^2/3.
Sum_{n>=0} (-1)^n/a(n) = 112*Pi^2 - 1740989/1575. (End)
a(n) = 165*A030648(n). - G. C. Greubel, Mar 10 2025

Extensions

More terms from Colin Barker, Jan 28 2013