cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105963 Expansion of (1+4*x)/(1-x-3*x^2).

Original entry on oeis.org

1, 5, 8, 23, 47, 116, 257, 605, 1376, 3191, 7319, 16892, 38849, 89525, 206072, 474647, 1092863, 2516804, 5795393, 13345805, 30731984, 70769399, 162965351, 375273548, 864169601, 1989990245, 4582499048, 10552469783, 24299966927
Offset: 0

Views

Author

Creighton Dement, Apr 28 2005

Keywords

Comments

Inversion of the periodic sequence with initial period (1,4,-1,-4). Sequence appears to have the property: for m > n, if s divides both a(n) and a(m) then s also divides a(2*m-n). E.g., 23 divides both a(3) = 23 and a(25) = 1989990245; 23 also divides a(2*25-3) = a(47) = 185518234185384428 = (2)^2*(23)*(131)*(15393149202239).
Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[.5'k + .5k' + 2'kk' + 2e]

Crossrefs

Programs

  • GAP
    a:=[1,5];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[ 1,5]; [n le 2 select I[n] else Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
    
  • Maple
    seq(coeff(series((1+4*x)/(1-x-3*x^2), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Jan 15 2020
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-x-3x^2), {x,0,40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    Table[Round[3^((n-1)/2)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 4*Fibonacci[n, 1/Sqrt[3]] )], {n,0,40}] (* G. C. Greubel, Jan 15 2020 *)
  • PARI
    Vec((1+4*x)/(1-x-3*x^2)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+4*x)/(1-x-3*x^2) ).list()
    A077952_list(30) # G. C. Greubel, Jan 15 2020
    

Formula

a(n) = A006130(n) + 4*A006130(n-1) = A006130(n+1) + A006130(n-1). - R. J. Mathar, Dec 12 2009
From Colin Barker, May 01 2019: (Start)
a(n) = (2^(-1-n)*((1-sqrt(13))^n*(-9+sqrt(13)) + (1+sqrt(13))^n*(9+sqrt(13)))) / sqrt(13).
a(n) = a(n-1) + 3*a(n-2) for n > 1. (End)
a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 4*Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020