A106033 a(n) is the least number k such that n*prime(n)+k is a perfect square.
2, 3, 1, 8, 9, 3, 2, 17, 18, 34, 20, 40, 43, 23, 24, 52, 21, 58, 23, 24, 67, 26, 27, 73, 75, 78, 28, 29, 88, 91, 32, 33, 103, 35, 114, 40, 120, 47, 48, 136, 57, 142, 68, 157, 160, 62, 83, 112, 113, 214, 217, 116, 223, 135, 26, 156, 43, 158, 41, 40, 161, 59, 259, 260, 104, 103
Offset: 1
Examples
a(10)=34 because 10*prime(10)+34 = 10*29+34 = 324 = 18^2.
Programs
-
Mathematica
a[n_]:=(Floor[Sqrt[n*Prime[n]]]+1)^2-n*Prime[n] lnk[n_]:=With[{c=n Prime[n]},(Floor[Sqrt[c]]+1)^2-c]; Array[lnk,70] (* Harvey P. Dale, Feb 17 2024 *)
Formula
a(n) = (floor(sqrt(n*prime(n)))+1)^2 - n*prime(n).