cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106035 The "Octanacci" sequence: Trajectory of 1 under the morphism 1->{1,2,1}, 2->{1}.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Roger L. Bagula, May 05 2005

Keywords

Comments

Silver mean chain substitution sequence: characteristic polynomial = -x^2+2*x+1.
A space-filling lattice is given by: bb = aa /. 1 -> {-0.4142135623730951, 2.414213562373095} /. 2 -> {1,-0.414213562373095`} /. 3 -> 0; ListPlot[FoldList[Plus, {0, 0}, bb], PlotRange -> All, PlotJoined -> False, Axes -> False];
The sequence is S_oo where S_0 = 2, S_1 = 1; S_{n+2} = S_{n+1} S_n S_{n+1}. Used to construct the "labyrinth" tiling. - N. J. A. Sloane, Mar 13 2019

Crossrefs

See A324772 for version over {0,1}.

Programs

  • Maple
    f(1):= (1, 2, 1): f(2):= (1): A:= [1]:
    for i from 1 to 6 do A:= map(f, A) od:
    A; # - N. J. A. Sloane, Mar 13 2019
  • Mathematica
    s[1] = {1, 2, 1}; s[2] = {1}; s[3] = {}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[6]
    Nest[Function[l, Flatten[l/.{1->{1, 2, 1}, 2->{1}}]], {1}, 6] (* Vincenzo Librandi, Mar 14 2019 *)
    SubstitutionSystem[{1->{1,2,1},2->{1}},{1},{6}]//Flatten (* Harvey P. Dale, Nov 20 2021 *)