A106162
Number of indecomposable Type II binary self-dual codes of length 8n.
Original entry on oeis.org
1, 1, 1, 7, 75, 94251
Offset: 0
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- Koichi Betsumiya, Masaaki Harada and Akihiro Munemasa, A Complete Classification of Doubly Even Self-Dual Codes of Length 40, arXiv:1104.3727v3 [math.CO], v3, Aug 02, 2012.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
a(4) corrected by John van Rees, Jul 21 2005. It was given as 76 by Conway and Pless and as 74 by Rains and Sloane.
a(5) = 94251 = 94343 - 75 - 7 - 7 - 1 - 1 - 1 (cf.
A106163) from Koichi Betsumaya, Aug 11 2012
A106163
Total number of (indecomposable or decomposable) Type II binary self-dual codes of length 8n.
Original entry on oeis.org
1, 1, 2, 9, 85, 94343
Offset: 0
- Koichi Betsumiya, Masaaki Harada and Akihiro Munemasa, A Complete Classification of Doubly Even Self-Dual Codes of Length 40, arXiv:1104.3727v3 [math.CO], v3, Aug 02, 2012. - From _Jonathan Vos Post_, Aug 06 2012
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. [DOI] MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A60 (1992), 183-195 (Abstract, pdf, ps, Table A, Table D).
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic. 11 (2005), 451-490. [DOI]
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746. [DOI] MR0514353
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A106165
Number of inequivalent (indecomposable or decomposable) Type I but not Type II binary self-dual codes of length 2n.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 3, 4, 5, 9, 16, 25, 46, 103, 261, 731, 3210, 24147
Offset: 0
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A106164
Number of indecomposable Type I but not Type II binary self-dual codes of length 2n.
Original entry on oeis.org
0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 6, 8, 19, 45, 148, 457, 2448, 20786
Offset: 0
- R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
a(34) computed by
N. J. A. Sloane, based on data in Bilous's paper, Sep 06 2005
A215219
Number of (indecomposable or decomposable) Type II binary self-dual codes of length 8n with the highest minimal distance.
Original entry on oeis.org
1, 1, 2, 1, 5, 16470, 1
Offset: 0
- Koichi Betsumiya, Masaaki Harada and Akihiro Munemasa, A Complete Classification of Doubly Even Self-Dual Codes of Length 40, arXiv:1104.3727v3 [math.CO], v3, Aug 02, 2012. - From _Jonathan Vos Post_, Aug 06 2012
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. [DOI] MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A60 (1992), 183-195 (Abstract, pdf, ps, Table A, Table D).
- S. K. Houghten, C. W. H. Lam, L. H. Thiel and J. A. Parker, The extended quadratic residue code is the only (48,24,12) self-dual doubly-even code, IEEE Trans. Inform. Theory, 49 (2003), 53-59.
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic. 11 (2005), 451-490. [DOI]
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746. [DOI] MR0514353
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A110193
Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 13, 74, 938
Offset: 1
- R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
Showing 1-6 of 6 results.
Comments