cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106180 Matrix inverse of number triangle A046854.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 2, -2, -1, 1, -2, 2, 3, -3, -1, 1, 0, -5, 5, 4, -4, -1, 1, 5, -5, -9, 9, 5, -5, -1, 1, 0, 14, -14, -14, 14, 6, -6, -1, 1, -14, 14, 28, -28, -20, 20, 7, -7, -1, 1, 0, -42, 42, 48, -48, -27, 27
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Comments

First column is A105523; second column is A106181.
Triangle T(n,k), 0 <= k <= n, read by rows given by [ -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 29 2006
A124448*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 16 2007

Examples

			Triangle begins
   1;
  -1,  1;
   0, -1,  1;
   1, -1, -1,  1;
   0,  2, -2, -1,  1;
  -2,  2,  3, -3, -1,  1;
   0, -5,  5,  4, -4, -1,  1;
		

Crossrefs

Cf. A000108.

Formula

Riordan array (1-y, y) where y=-(1-sqrt(1+4x^2))/(2x).
Sum_{k=0..n} abs(T(n,k)) = A063886(n). - Philippe Deléham, Oct 06 2006
T(0,0)=1; T(n,k)=0 if k < 0 or if k > n; T(n,0) = -T(n-1,0) - T(n-1,1); T(n,k) = T(n,k-1) - T(n-1,k+1) for k >= 1. - Philippe Deléham, Oct 27 2007
T(2n,0) = A000007(n); T(2n+2,2k+2) = -T(2n+2,2k+1) = (-1)^(n-k)*A039598(n,k); T(2n+1,2k+1) = -T(2n+1,2k) = (-1)^(n-k)*A039599(n,k). - Philippe Deléham, Oct 29 2007
Sum_{k>=0} T(m,k)*T(n,k)*(-1)^k = T(m+n,0) = A105523(m+n). - Philippe Deléham, Jan 24 2010

A099363 An inverse Chebyshev transform of 1-x.

Original entry on oeis.org

1, -1, 1, -2, 2, -5, 5, -14, 14, -42, 42, -132, 132, -429, 429, -1430, 1430, -4862, 4862, -16796, 16796, -58786, 58786, -208012, 208012, -742900, 742900, -2674440, 2674440, -9694845, 9694845, -35357670, 35357670, -129644790, 129644790, -477638700, 477638700, -1767263190, 1767263190
Offset: 0

Views

Author

Paul Barry, Oct 13 2004

Keywords

Comments

Second binomial transform of the expansion of c(-x)^3. The g.f. is transformed to 1-x under the Chebyshev transformation A(x)->(1/(1+x^2))A(x/(1+x^2)).
A208355(n) = abs(a(n)). - Reinhard Zumkeller, Mar 03 2012

Crossrefs

Cf. A000245.
Cf. A106181, A129996 and A208355, which also consist of duplicated Catalan numbers A000108. - M. F. Hasler, Aug 25 2012

Programs

  • Mathematica
    Table[(-1)^n CatalanNumber[Floor[(n+1)/2]], {n, 0, 38}] (* Jean-François Alcover, Jun 11 2019 *)
  • PARI
    A099363(n)=(-1)^n*A000108((n+1)\2) \\ M. F. Hasler, Aug 25 2012
  • Sage
    def A099363_list(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 2; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] -= D[k-1]
                h += 1; R.append((-1)^(h//2)*D[2])
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A099363_list(39) # Peter Luschny, Jun 03 2012
    

Formula

G.f.: (1-(1-x)c(x^2))/x where c(x) is the g.f. of the Catalan numbers A000108.
a(n) = sum{k=0..n, (k+1)C(n, (n-k)/2)(0^k-sum{j=0..k, C(k, j)(-1)^(k-j)*j})(1+(-1)^(n-k))/(n+k+2)}.
a(n) = (-1)^n A208355(n) = (-1)^n A000108([(n+1)/2]): Repeated Catalan numbers with alternating sign. - M. F. Hasler, Aug 25 2012
Conjecture: (n+3)*a(n) +(-n-1)*a(n-1) -4*n*a(n-2) +4*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 26 2012

A129996 a(n) = (-1)^[(n+1)/2] A000108([n/2]+1).

Original entry on oeis.org

1, -1, -2, 2, 5, -5, -14, 14, 42, -42, -132, 132, 429, -429, -1430, 1430, 4862, -4862, -16796, 16796, 58786, -58786, -208012, 208012, 742900, -742900, -2674440, 2674440, 9694845, -9694845, -35357670, 35357670, 129644790, -129644790, -477638700, 477638700
Offset: 0

Views

Author

Paul Curtz, Jun 15 2007

Keywords

Comments

Terms of A000108(1,...) repeated, changing sign between the two repeated terms of same magnitude, but keeping the same sign for the next (larger) term. - M. F. Hasler, Aug 25 2012

Crossrefs

Cf. A099363, A106181 and A208355, which also consist of duplicated terms of A000108. - M. F. Hasler, Aug 25 2012

Programs

Formula

First differences of A129110: a(n)=A129110(n+1)-A129110(n).

Extensions

Definition (formula) corrected by M. F. Hasler, Aug 25 2012

A129110 A transformation of the Catalan sequence.

Original entry on oeis.org

1, 2, 1, -1, 1, 6, 1, -13, 1, 43, 1, -131, 1, 430, 1, -1429, 1, 4863, 1, -16795, 1, 58787, 1, -208011, 1, 742901, 1, -2674439, 1, 9694846, 1, -35357669, 1, 129644791, 1, -477638699, 1, 1767263191, 1, -6564120419, 1, 24466267021, 1, -91482563639, 1, 343059613651
Offset: 0

Views

Author

Paul Curtz, May 24 2007

Keywords

Formula

a(2n)=1. a(2n+1)= 1+(-1)^n*C(n+1), where C=A000108.
a(n+1)-a(n) = A129996(n) (similar to A099363 and A106181).

Extensions

Edited and extended by R. J. Mathar, Jul 04 2008
Showing 1-4 of 4 results.