cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A208355 Right edge of the triangle in A208101.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 14, 14, 42, 42, 132, 132, 429, 429, 1430, 1430, 4862, 4862, 16796, 16796, 58786, 58786, 208012, 208012, 742900, 742900, 2674440, 2674440, 9694845, 9694845, 35357670, 35357670, 129644790, 129644790, 477638700, 477638700, 1767263190
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 04 2012

Keywords

Comments

Number of achiral polyominoes composed of n+1 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. An achiral polyomino is identical to its reflection. - Robert A. Russell, Jan 20 2024

Examples

			a(0)=1; a(1)=1; a(2)=1; a(3)=2. - _Robert A. Russell_, Jan 19 2024
____      ________
\  /  /\  \  /\  /  /\     /\
 \/  /__\  \/__\/  /__\   /__\____
     \  /         /\  /\  \  /\  /
      \/         /__\/__\  \/__\/
		

Crossrefs

Polyominoes: A001683(n+2) (oriented), A000207 (unoriented). A369314 (chiral), A000108 (rooted), A047749 ({4,oo}).

Programs

  • Haskell
    a208355 n = a208101 n n
    a208355_list = map last a208101_tabl
    
  • Magma
    [Ceiling(Catalan(n div 2)): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
  • Maple
    A208355_list := proc(len) local D, b, h, R, i, k;
        D := [seq(0, j=0..len+2)]; D[1] := 1; b := true; h := 2; R := NULL;
        for i from 1 to 2*len do
            if b then
                for k from h by -1 to 2 do D[k] := D[k] - D[k-1] od;
                h := h + 1; R := R, abs(D[2]);
            else
                for k from 1 by 1 to h do D[k] := D[k] + D[k+1] od;
            fi;
            b := not b:
        od;
        return R
    end:
    A208355_list(38); # Peter Luschny, Dec 19 2017
  • Mathematica
    T[, 0] = 1; T[n, 1] := n; T[n_, n_] := T[n - 1, n - 2]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 2];
    a[n_] := T[n, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2018, from A208101 *)
    Table[If[EvenQ[n], Binomial[n,n/2]/(n/2+1), Binomial[n+1,(n+1)/2]/((n+3)/2)], {n,0,40}] (* Robert A. Russell, Jan 19 2024 *)

Formula

a(n) = A000108(floor((n+1)/2)), where A000108 = Catalan numbers.
a(n) = A208101(n,n).
a(n) = abs(A099363(n)).
Conjecture: -(n+3)*(n-2)*a(n) - 4*a(n-1) + 4*(n-1)^2*a(n-2) = 0. - R. J. Mathar, Aug 04 2015
From Robert A. Russell, Jan 19 2024: (Start)
a(2m) = C(2m,m)/(m+1); a(2m-1) = a(2m); a(n+2)/a(n) ~ 4.
a(n-1) = 2*A000207(n) - A001683(n+2) = A001683(n+2) - 2*A369314(n) = A000207(n) - A369314(n). (End)
G.f.: (G(z^2)+z*G(z^2)-1)/z, where G(z)=1+z*G(z)^2, the generating function for A000108. - Robert A. Russell, Jan 26 2024
G.f.: ((((1+z)*(1-sqrt(1-4*z^2)))/(2*z^2))-1)/z. - Robert A. Russell, Jan 28 2024
From Peter Bala, Feb 05 2024: (Start)
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A000245(k+1).
a(n) = (-2)^n * hypergeom([-n, 3/2, 2], [1, 4], 2). (End)

A129996 a(n) = (-1)^[(n+1)/2] A000108([n/2]+1).

Original entry on oeis.org

1, -1, -2, 2, 5, -5, -14, 14, 42, -42, -132, 132, 429, -429, -1430, 1430, 4862, -4862, -16796, 16796, 58786, -58786, -208012, 208012, 742900, -742900, -2674440, 2674440, 9694845, -9694845, -35357670, 35357670, 129644790, -129644790, -477638700, 477638700
Offset: 0

Views

Author

Paul Curtz, Jun 15 2007

Keywords

Comments

Terms of A000108(1,...) repeated, changing sign between the two repeated terms of same magnitude, but keeping the same sign for the next (larger) term. - M. F. Hasler, Aug 25 2012

Crossrefs

Cf. A099363, A106181 and A208355, which also consist of duplicated terms of A000108. - M. F. Hasler, Aug 25 2012

Programs

Formula

First differences of A129110: a(n)=A129110(n+1)-A129110(n).

Extensions

Definition (formula) corrected by M. F. Hasler, Aug 25 2012

A106181 Expansion of c(-x^2)(1+2x-sqrt(1+4x^2))/2, c(x) the g.f. of A000108.

Original entry on oeis.org

0, 1, -1, -1, 2, 2, -5, -5, 14, 14, -42, -42, 132, 132, -429, -429, 1430, 1430, -4862, -4862, 16796, 16796, -58786, -58786, 208012, 208012, -742900, -742900, 2674440, 2674440, -9694845, -9694845, 35357670, 35357670, -129644790, -129644790, 477638700, 477638700, -1767263190, -1767263190
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Comments

Second column of number triangle A106180.

Crossrefs

Formula

a(n) = sin(Pi*n/2)*(C((n-1)/2)*(1-(-1)^n)/2) + sin(Pi*(n+1)/2)*(C(n/2)*(1+(-1)^n)/2) - 0^n for n > 0.
Conjecture: (n+2)*a(n) + n*a(n-1) + 4*(n-1)*a(n-2) + 4*(n-3)*a(n-3) = 0. - R. J. Mathar, Nov 15 2011

A129110 A transformation of the Catalan sequence.

Original entry on oeis.org

1, 2, 1, -1, 1, 6, 1, -13, 1, 43, 1, -131, 1, 430, 1, -1429, 1, 4863, 1, -16795, 1, 58787, 1, -208011, 1, 742901, 1, -2674439, 1, 9694846, 1, -35357669, 1, 129644791, 1, -477638699, 1, 1767263191, 1, -6564120419, 1, 24466267021, 1, -91482563639, 1, 343059613651
Offset: 0

Views

Author

Paul Curtz, May 24 2007

Keywords

Formula

a(2n)=1. a(2n+1)= 1+(-1)^n*C(n+1), where C=A000108.
a(n+1)-a(n) = A129996(n) (similar to A099363 and A106181).

Extensions

Edited and extended by R. J. Mathar, Jul 04 2008
Showing 1-4 of 4 results.