A106191 Expansion of sqrt(1-4x)/(1-x).
1, -1, -3, -7, -17, -45, -129, -393, -1251, -4111, -13835, -47427, -164999, -581023, -2066823, -7415703, -26805393, -97520733, -356810313, -1312087713, -4846614093, -17974854933, -66907388973, -249872516253, -935991743553, -3515800038201, -13239692841105
Offset: 0
Crossrefs
Formula
a(n) = Sum_{k=0..n} binomial(2k, k)/(1-2k).
G.f.: (2/(1-x))/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
D-finite with recurrence: a(0)=1, a(1)=-1; for n>1, a(n) = (1/n)*((5*n-6)*a(n-1) - (4*n-6)*a(n-2)). - Tani Akinari, Aug 25 2013
Extensions
Barry's formula made more succinct, as well as comments regarding interpretation as absolute values added by Antti Karttunen, Sep 14 2006
Comments