A106195 Riordan array (1/(1-2*x), x*(1-x)/(1-2*x)).
1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 20, 13, 5, 1, 32, 48, 38, 19, 6, 1, 64, 112, 104, 63, 26, 7, 1, 128, 256, 272, 192, 96, 34, 8, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1024, 2816, 4096, 4048, 2972, 1683, 743, 253, 64, 11
Offset: 0
Examples
Triangle begins 1; 2, 1; 4, 3, 1; 8, 8, 4, 1; 16, 20, 13, 5, 1; 32, 48, 38, 19, 6, 1; 64, 112, 104, 63, 26, 7, 1; (0, 2, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, ...) begins : 1; 0, 1; 0, 2, 1; 0, 4, 3, 1; 0, 8, 8, 4, 1; 0, 16, 20, 13, 5, 1; 0, 32, 48, 38, 19, 6, 1; 0, 64, 112, 104, 63, 26, 7, 1. - _Philippe Deléham_, Mar 22 2012
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- E. Munarini, N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
Crossrefs
Programs
-
Haskell
a106195 n k = a106195_tabl !! n !! k a106195_row n = a106195_tabl !! n a106195_tabl = [1] : [2, 1] : f [1] [2, 1] where f us vs = ws : f vs ws where ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0])) ([0] ++ us ++ [0]) -- Reinhard Zumkeller, Dec 16 2013
-
Magma
[ (&+[Binomial(n-k, n-j)*Binomial(j, k): j in [0..n]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 15 2020
-
Maple
T := (n, k) -> hypergeom([-n+k, k+1],[1],-1): seq(lprint(seq(simplify(T(n, k)), k=0..n)), n=0..7); # Peter Luschny, May 20 2015
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207605 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A106195 *) (* Clark Kimberling, Feb 19 2012 *) Table[Hypergeometric2F1[-n+k, k+1, 1, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
Maxima
create_list(sum(binomial(i,k)*binomial(n-k,n-i),i,0,n),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */
-
Python
from sympy import Poly, symbols x = symbols('x') def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x) def a(n): return Poly(v(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
-
Python
from mpmath import hyp2f1, nprint def T(n, k): return hyp2f1(k - n, k + 1, 1, -1) for n in range(13): nprint([int(T(n, k)) for k in range(n + 1)]) # Indranil Ghosh, May 28 2017, after formula from Peter Luschny
-
Sage
[[sum(binomial(n-k,n-j)*binomial(j,k) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020
Formula
T(n,k) = Sum_{j=0..n} C(n-k,n-j)*C(j,k).
From Emanuele Munarini, Mar 22 2011: (Start)
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-k,i)*2^(n-k-i).
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-i,k)*(-1)^i*2^(n-k-i).
Recurrence: T(n+2,k+1) = 2*T(n+1,k+1)+T(n+1,k)-T(n,k). (End)
From Clark Kimberling, Feb 19 2012: (Start)
Define u(n,x) = u(n-1,x)+v(n-1,x), v(n,x) = u(n-1,x)+(x+1)*v(n-1,x),
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1). - Philippe Deléham, Mar 22 2012
T(n+k,k) is the coefficient of x^n y^k in 1/(1-2x-y+xy). - Ira M. Gessel, Oct 30 2012
T(n, k) = A208341(n+1,n-k+1), k = 0..n. - Reinhard Zumkeller, Dec 16 2013
T(n, k) = hypergeometric_2F1(-n+k, k+1, 1 , -1). - Peter Luschny, May 20 2015
G.f. 1/(1-2*x+x^2*y-x*y). - R. J. Mathar, Aug 11 2015
Sum_{k=0..n} T(n, k) = Fibonacci(2*n+2) = A088305(n+1). - G. C. Greubel, Mar 15 2020
Extensions
Edited by N. J. A. Sloane, Apr 09 2007, merging two sequences submitted independently by Gary W. Adamson and Paul Barry
Comments