A106229 Least j > 1 for n > 0 such that j^2 = (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 where k sequence = A106230.
5, 19, 11, 35, 79, 149, 251, 391, 575, 809, 1099, 1451, 1871, 2365, 2939, 3599, 4351, 5201, 6155, 7219, 8399, 9701, 11131, 12695, 14399, 16249, 18251, 20411, 22735, 25229, 27899, 30751, 33791, 37025, 40459, 44099, 47951, 52021, 56315, 60839, 65599, 70601, 75851
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{5,19,11,35,79,149},43] (* Georg Fischer, Oct 25 2020 *)
-
PARI
a(n) = if(n<3, 14*n-9, n^3-2*n^2+n-1); \\ Jinyuan Wang, Apr 07 2020
Formula
For n > 2, a(n) = n^3 - 2*n^2 + n - 1.
Extensions
More terms from Jinyuan Wang, Apr 07 2020
Comments