cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106229 Least j > 1 for n > 0 such that j^2 = (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 where k sequence = A106230.

Original entry on oeis.org

5, 19, 11, 35, 79, 149, 251, 391, 575, 809, 1099, 1451, 1871, 2365, 2939, 3599, 4351, 5201, 6155, 7219, 8399, 9701, 11131, 12695, 14399, 16249, 18251, 20411, 22735, 25229, 27899, 30751, 33791, 37025, 40459, 44099, 47951, 52021, 56315, 60839, 65599, 70601, 75851
Offset: 1

Views

Author

Pierre CAMI, Apr 26 2005

Keywords

Comments

For j^2 = (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1, there is a sequence j(i,n) with a recurrence.
For n=1, j(1,1) = 1, j(2,1) = 5, j(i,1) = 6*j(i-1,1) - j(i-2,1).
For n=2, j(1,2) = 1, j(2,2) = 19, j(i,2) = 18*j(i-1,2) - j(i-2,2).
For n>2, j(1,n) = 1, j(2,n) = n^3 - 2*n^2 + n - 1, j(3,n) = n^3 + 2*n^2 + n + 1, j(4,n) = (4*n^2 + 2)*j(2,n) + 1 then j(i,n) = (4*n^2+2)*j(i-2,n) - j(i-4,n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{5,19,11,35,79,149},43] (* Georg Fischer, Oct 25 2020 *)
  • PARI
    a(n) = if(n<3, 14*n-9, n^3-2*n^2+n-1); \\ Jinyuan Wang, Apr 07 2020

Formula

For n > 2, a(n) = n^3 - 2*n^2 + n - 1.

Extensions

More terms from Jinyuan Wang, Apr 07 2020