A106230 Least k > 0 for n > 0 such that (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 = j^2 where j sequence = A106229.
3, 8, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
CoefficientList[Series[(-3 + z + 12*z^2 - 20*z^3 + 8*z^4)/(-1 + z)^3, {z, 0, 60}], z] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *) LinearRecurrence[{3,-3,1},{3,8,3,8,15},60] (* Harvey P. Dale, Jul 05 2022 *)
-
PARI
x='x+O('x^50); Vec((3-x-12*x^2+20*x^3-8*x^4)/(1-x)^3) \\ G. C. Greubel, May 11 2017
-
PARI
a(n)=n*if(n>2, n-2, n+2) \\ Charles R Greathouse IV, Oct 19 2022
Formula
For n > 2, a(n) = n^2 - 2*n.
a(n) = A005563(n-2), n>2. - R. J. Mathar, Aug 28 2008
G.f.: (3 - x - 12*x^2 + 20*x^3 - 8*x^4)/(1 - x)^3. - G. C. Greubel, May 11 2017
Comments