A106238 Triangle read by rows: T(n,m) is the number of semi-strong digraphs on n unlabeled nodes with m connected components.
1, 1, 1, 5, 1, 1, 83, 6, 1, 1, 5048, 88, 6, 1, 1, 1047008, 5146, 89, 6, 1, 1, 705422362, 1052471, 5151, 89, 6, 1, 1, 1580348371788, 706498096, 1052569, 5152, 89, 6, 1, 1, 12139024825260556, 1581059448174, 706503594, 1052574, 5152, 89, 6, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 5, 1, 1; 83, 6, 1, 1; 5048, 88, 6, 1, 1; 1047008, 5146, 89, 6, 1, 1; 705422362, 1052471, 5151, 89, 6, 1, 1; ... T(4,2) = 6 because there are 6 digraphs of order 4 with 2 strongly connected components.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Formula
G.f.: 1/Product_{i>=1} (1-y*x^i)^A035512(i). - Vladeta Jovovic, May 04 2005
Triangle read by rows: T(n, m) is the sum over the partitions of n with m parts 1K1 + 2K2 + ... + nKn, of Product_{i=1..n} binomial(A035512(i) + Ki - 1, Ki).
Extensions
Definition clarified by Andrew Howroyd, Jan 14 2022
Comments