cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106268 Number triangle T(n,k) = (-1)^(n-k)*binomial(k-n, n-k) = (0^(n-k) + binomial(2*(n-k), n-k))/2 if k <= n, 0 otherwise; Riordan array (1/(2-C(x)), x) where C(x) is g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 10, 3, 1, 1, 35, 10, 3, 1, 1, 126, 35, 10, 3, 1, 1, 462, 126, 35, 10, 3, 1, 1, 1716, 462, 126, 35, 10, 3, 1, 1, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 92378, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Comments

Triangle includes A088218.
Inverse is A106270.

Examples

			Triangle (with rows n >= 0 and columns k >= 0) begins as follows:
    1;
    1,  1;
    3,  1,  1;
   10,  3,  1, 1;
   35, 10,  3, 1, 1;
  126, 35, 10, 3, 1, 1;
  ...
Production matrix begins:
    1, 1;
    2, 0, 1;
    5, 0, 0, 1;
   14, 0, 0, 0, 1;
   42, 0, 0, 0, 0, 1;
  132, 0, 0, 0, 0, 0, 1;
  429, 0, 0, 0, 0, 0, 0, 1;
  ... - _Philippe Deléham_, Oct 02 2014
		

Crossrefs

Cf. A000108, A024718 (row sums), A088218, A106269 (diagonal sums), A106270.

Programs

  • Magma
    A106268:= func< n,k | k eq n select 1 else (n-k+1)*Catalan(n-k)/2 >;
    [A106268(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2023
    
  • Mathematica
    T[n_, k_]:= (-1)^(n-k)*Binomial[k-n, n-k];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
  • PARI
    trg(nn) = {for (n=1, nn, for (k=1, n, print1(binomial(k-n,n-k)*(-1)^(n-k), ", ");); print(););} \\ Michel Marcus, Oct 03 2014
    
  • SageMath
    def A106268(n,k): return (1/2)*(0^(n-k) + (n-k+1)*catalan_number(n-k))
    flatten([[A106268(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 10 2023

Formula

T(n, k) = (-1)^(n-k)*binomial(k-n, n-k).
T(n, k) = (1/2)*(0^(n-k) + binomial(2*(n-k), n-k)).
Sum_{k=0..n} T(n, k) = A024718(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106269(n) (diagonal sums).
Bivariate g.f.: Sum_{n, k >= 0} T(n,k)*x^n*y^k = (1/2) * (1/(1 - x*y)) * (1 + 1/sqrt(1 - 4*x)). - Petros Hadjicostas, Jul 15 2019