A106268 Number triangle T(n,k) = (-1)^(n-k)*binomial(k-n, n-k) = (0^(n-k) + binomial(2*(n-k), n-k))/2 if k <= n, 0 otherwise; Riordan array (1/(2-C(x)), x) where C(x) is g.f. for Catalan numbers A000108.
1, 1, 1, 3, 1, 1, 10, 3, 1, 1, 35, 10, 3, 1, 1, 126, 35, 10, 3, 1, 1, 462, 126, 35, 10, 3, 1, 1, 1716, 462, 126, 35, 10, 3, 1, 1, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1, 92378, 24310, 6435, 1716, 462, 126, 35, 10, 3, 1, 1
Offset: 0
Examples
Triangle (with rows n >= 0 and columns k >= 0) begins as follows: 1; 1, 1; 3, 1, 1; 10, 3, 1, 1; 35, 10, 3, 1, 1; 126, 35, 10, 3, 1, 1; ... Production matrix begins: 1, 1; 2, 0, 1; 5, 0, 0, 1; 14, 0, 0, 0, 1; 42, 0, 0, 0, 0, 1; 132, 0, 0, 0, 0, 0, 1; 429, 0, 0, 0, 0, 0, 0, 1; ... - _Philippe Deléham_, Oct 02 2014
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A106268:= func< n,k | k eq n select 1 else (n-k+1)*Catalan(n-k)/2 >; [A106268(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 10 2023
-
Mathematica
T[n_, k_]:= (-1)^(n-k)*Binomial[k-n, n-k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 10 2023 *)
-
PARI
trg(nn) = {for (n=1, nn, for (k=1, n, print1(binomial(k-n,n-k)*(-1)^(n-k), ", ");); print(););} \\ Michel Marcus, Oct 03 2014
-
SageMath
def A106268(n,k): return (1/2)*(0^(n-k) + (n-k+1)*catalan_number(n-k)) flatten([[A106268(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 10 2023
Formula
T(n, k) = (-1)^(n-k)*binomial(k-n, n-k).
T(n, k) = (1/2)*(0^(n-k) + binomial(2*(n-k), n-k)).
Sum_{k=0..n} T(n, k) = A024718(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106269(n) (diagonal sums).
Bivariate g.f.: Sum_{n, k >= 0} T(n,k)*x^n*y^k = (1/2) * (1/(1 - x*y)) * (1 + 1/sqrt(1 - 4*x)). - Petros Hadjicostas, Jul 15 2019
Comments