A106269 Expansion of 1/((1 - x^2)*(2 - c(x))), where c(x) is the g.f. of A000108.
1, 1, 4, 11, 39, 137, 501, 1853, 6936, 26163, 99314, 378879, 1451392, 5579179, 21509692, 83137939, 322049887, 1249941049, 4859617537, 18922572949, 73782881947, 288051510169, 1125832363807, 4404766873969, 17249634205357
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1664
Programs
-
Magma
A106269:= func< n | (-1)^n*(&+[Binomial(2*k-n, n-2*k): k in [0..Floor(n/2)]]) >; [A106269(n): n in [0..40]]; // G. C. Greubel, Jan 10 2023
-
Mathematica
Array[(-1)^#*Sum[Binomial[2 k - #, # - 2 k], {k, 0, Floor[#/2]}] &, 25, 0] (* Michael De Vlieger, Jul 18 2019 *)
-
PARI
c(x) = (1-sqrt(1-4*x))/(2*x); my(x='x+O('x^35)); Vec(1/((1 - x^2)*(2 - c(x)))) \\ Michel Marcus, Jul 16 2019
-
SageMath
def A106269(n): return (-1)^n*sum(binomial(2*k-n, n-2*k) for k in range(n//2+1)) [A106269(n) for n in range(41)] # G. C. Greubel, Jan 10 2023
Formula
a(n) = (-1)^n*Sum{k = 0..floor(n/2)} binomial(2*k - n, n - 2*k).
n*a(n) = 2*(2*n-1)*a(n-1) + n*a(n-2) - 2*(2*n-1)*a(n-3). - R. J. Mathar, Dec 10 2011
G.f.: 1/(sqrt(1-4*x)*(1-x^2)*c(x)), where c(x) is the g.f. of A000108. - G. C. Greubel, Jan 10 2023
Comments