cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106269 Expansion of 1/((1 - x^2)*(2 - c(x))), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 11, 39, 137, 501, 1853, 6936, 26163, 99314, 378879, 1451392, 5579179, 21509692, 83137939, 322049887, 1249941049, 4859617537, 18922572949, 73782881947, 288051510169, 1125832363807, 4404766873969, 17249634205357
Offset: 0

Views

Author

Paul Barry, Apr 28 2005

Keywords

Comments

Row sums of number triangle A106268.
From Petros Hadjicostas, Jul 19 2019: (Start)
Let A(x) be the g.f. of the current sequence. We note first that
Sum_{n >= 3} n*a(n)*x^n = x*A'(x) - (x + 8*x^2),
Sum_{n >= 3} 2*(1-2*n)*a(n-1)*x^n = 2*x*A(x) - 4*x*(x*A(x))' + (2*x + 6*x^2),
Sum_{n >= 3} (-n)*a(n-2)*x^n = -x*(x^2*A(x))' + 2*x^2, and
Sum_{n >= 3} 2*(2*n-1)*a(n-3)*x^n = 4*x*(x^3*A(x))' - 2*x^3*A(x).
Adding these equations (side by side), we get
Sum_{n >= 3} (n*a(n) + 2*(1-2*n)*a(n-1) - n*a(n-2) + 2*(2*n-1)*a(n-3))*x^n = 0,
which proves R. J. Mathar's formula.
(End)

Crossrefs

Programs

  • Magma
    A106269:= func< n | (-1)^n*(&+[Binomial(2*k-n, n-2*k): k in [0..Floor(n/2)]]) >;
    [A106269(n): n in [0..40]]; // G. C. Greubel, Jan 10 2023
    
  • Mathematica
    Array[(-1)^#*Sum[Binomial[2 k - #, # - 2 k], {k, 0, Floor[#/2]}] &, 25, 0] (* Michael De Vlieger, Jul 18 2019 *)
  • PARI
    c(x) = (1-sqrt(1-4*x))/(2*x);
    my(x='x+O('x^35)); Vec(1/((1 - x^2)*(2 - c(x)))) \\ Michel Marcus, Jul 16 2019
    
  • SageMath
    def A106269(n): return (-1)^n*sum(binomial(2*k-n, n-2*k) for k in range(n//2+1))
    [A106269(n) for n in range(41)] # G. C. Greubel, Jan 10 2023

Formula

a(n) = (-1)^n*Sum{k = 0..floor(n/2)} binomial(2*k - n, n - 2*k).
n*a(n) = 2*(2*n-1)*a(n-1) + n*a(n-2) - 2*(2*n-1)*a(n-3). - R. J. Mathar, Dec 10 2011
G.f.: 1/(sqrt(1-4*x)*(1-x^2)*c(x)), where c(x) is the g.f. of A000108. - G. C. Greubel, Jan 10 2023