A106273 Discriminant of the polynomial x^n - x^(n-1) - ... - x - 1.
1, 5, -44, -563, 9584, 205937, -5390272, -167398247, 6042477824, 249317139869, -11597205023744, -601139006326619, 34383289858207744, 2151954708695291177, -146323302326154543104, -10742330662077208945103, 846940331265064719417344, 71373256668946058057974997
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics 36(2), 2007, pp. 251-257. MR2312537. Zbl 1133.11012.
- Michael Baake and Uwe Grimm, Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings, arXiv:1907.11012 [math.MG], 2019.
- Herbert Batte and Florian Luca, The Discriminant of the Characteristic Polynomial of the kth Fibonacci sequence is not a member of the kth Lucas sequence, arXiv:2504.02514 [math.NT], 2025.
- Florian Luca, On the discriminant of the k-generalized Fibonacci polynomial, II, Fibonacci Quart. 62 (2024), no. 3, 193-200.
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
- Eric Weisstein's World of Mathematics, Polynomial Discriminant
Crossrefs
Cf. A086797 (discriminant of the polynomial x^n-x-1), A000045, A000073, A000078, A001591, A001592 (Fibonacci n-step sequences), A000032, A001644, A073817, A074048, A074584, A104621, A105754, A105755 (Lucas n-step sequences), A086937, A106276, A106277, A106278 (number of distinct zeros of these polynomials for n=2, 3, 4, 5).
Programs
-
Mathematica
Discriminant[p_?PolynomialQ, x_] := With[{n=Exponent[p, x]}, Cancel[((-1)^(n(n-1)/2) Resultant[p, D[p, x], x])/Coefficient[p, x, n]^(2n-1)]]; Table[Discriminant[x^n-Sum[x^i, {i, 0, n-1}], x], {n, 20}]
-
PARI
{a(n)=(-1)^(n*(n+1)/2)*((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2} \\ Max Alekseyev, May 05 2005
-
PARI
a(n)=poldisc('x^n-sum(k=0,n-1,'x^k)); \\ Joerg Arndt, May 04 2013
Formula
a(n) = (-1)^(n*(n+1)/2) * ((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2. - Max Alekseyev, May 05 2005
Comments