cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A106273 Discriminant of the polynomial x^n - x^(n-1) - ... - x - 1.

Original entry on oeis.org

1, 5, -44, -563, 9584, 205937, -5390272, -167398247, 6042477824, 249317139869, -11597205023744, -601139006326619, 34383289858207744, 2151954708695291177, -146323302326154543104, -10742330662077208945103, 846940331265064719417344, 71373256668946058057974997
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas n-step sequences. These discriminants are prime for n=2, 4, 6, 26, 158 (A106274). It appears that the term a(2n+1) always has a factor of 2^(2n). With that factor removed, the discriminants are prime for odd n=3, 5, 7, 21, 99, 405. See A106275 for the combined list.
a(n) is the determinant of an r X r Hankel matrix whose entries are w(i+j) where w(n) = x1^n + x2^n + ... + xr^n where x1,x2,...xr are the roots of the titular characteristic polynomial. E.g., A000032 for n=2, A001644 for n=3, A073817 for n=4, A074048 for n=5, A074584 for n=6, A104621 for n=7, ... - Kai Wang, Jan 17 2021
Luca proves that a(n) is a term of the corresponding k-nacci sequence only for n=2 and 3. - Michel Marcus, Apr 12 2025

Crossrefs

Cf. A086797 (discriminant of the polynomial x^n-x-1), A000045, A000073, A000078, A001591, A001592 (Fibonacci n-step sequences), A000032, A001644, A073817, A074048, A074584, A104621, A105754, A105755 (Lucas n-step sequences), A086937, A106276, A106277, A106278 (number of distinct zeros of these polynomials for n=2, 3, 4, 5).

Programs

  • Mathematica
    Discriminant[p_?PolynomialQ, x_] := With[{n=Exponent[p, x]}, Cancel[((-1)^(n(n-1)/2) Resultant[p, D[p, x], x])/Coefficient[p, x, n]^(2n-1)]]; Table[Discriminant[x^n-Sum[x^i, {i, 0, n-1}], x], {n, 20}]
  • PARI
    {a(n)=(-1)^(n*(n+1)/2)*((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2}  \\ Max Alekseyev, May 05 2005
    
  • PARI
    a(n)=poldisc('x^n-sum(k=0,n-1,'x^k)); \\ Joerg Arndt, May 04 2013

Formula

a(n) = (-1)^(n*(n+1)/2) * ((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2. - Max Alekseyev, May 05 2005

A106280 Primes p such that the polynomial x^4-x^3-x^2-x-1 mod p has 4 distinct zeros.

Original entry on oeis.org

137, 179, 653, 859, 991, 1279, 1601, 1609, 2089, 2437, 2591, 2693, 2789, 2897, 3701, 3823, 3847, 4451, 4691, 4751, 4919, 5431, 5479, 5807, 5903, 5953, 6203, 6421, 6781, 6917, 7253, 7867, 8317, 9187, 9277, 9533, 9629, 9767, 9907, 9967, 10009, 10079
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 4-step sequences, A000078 and A073817. The periods of the sequences A000078(k) mod p and A073817(k) mod p have length less than p.

Crossrefs

Cf. A106277 (number of distinct zeros of x^4-x^3-x^2-x-1 mod prime(n)), A106296 (period of 4-step sequence mod prime(n)).

Programs

  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 1600}];Prime[Flatten[Position[t, 4]]]

A106283 Primes p such that the polynomial x^4-x^3-x^2-x-1 mod p has no zeros.

Original entry on oeis.org

2, 5, 11, 13, 31, 43, 53, 79, 83, 89, 97, 103, 109, 131, 139, 151, 197, 199, 229, 233, 239, 251, 257, 271, 283, 313, 317, 347, 359, 367, 379, 389, 433, 443, 461, 479, 487, 521, 569, 571, 577, 593, 599, 601, 617, 631, 641, 643, 647, 659, 673, 677, 719, 769, 797
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 4-step sequences, A000078 and A073817.

Crossrefs

Cf. A106277 (number of distinct zeros of x^4-x^3-x^2-x-1 mod prime(n)), A106296 (period of Lucas 4-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible in mod p).

Programs

  • Maple
    Res:= NULL: count:= 0: p:= 0:
    P:= x^4 - x^3 - x^2 - x - 1:
    while count < 100 do
      p:= nextprime(p);
      if [msolve(P,p)] = [] then
        Res:= Res, p; count:= count+1;
      fi
    od:
    Res; # Robert Israel, Mar 13 2024
  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • Python
    from itertools import islice
    from sympy import Poly, nextprime
    from sympy.abc import x
    def A106283_gen(): # generator of terms
        p = 2
        while True:
            if len(Poly(x*(x*(x*(x-1)-1)-1)-1, x, modulus=p).ground_roots())==0:
                yield p
            p = nextprime(p)
    A106283_list = list(islice(A106283_gen(),20)) # Chai Wah Wu, Mar 14 2024

Extensions

Name corrected by Robert Israel, Mar 13 2024
Showing 1-3 of 3 results.