cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106284 Primes p such that the polynomial x^5-x^4-x^3-x^2-x-1 mod p has no zeros.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 31, 37, 41, 53, 71, 79, 83, 107, 151, 157, 199, 229, 233, 239, 241, 257, 263, 277, 281, 311, 317, 331, 337, 379, 389, 409, 431, 433, 463, 467, 521, 523, 541, 547, 557, 563, 571, 577, 607, 631, 659, 677, 727, 769, 787, 809, 827, 839, 853
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 5-step sequences, A001591 and A074048.

Crossrefs

Cf. A106278 (number of distinct zeros of x^5-x^4-x^3-x^2-x-1 mod prime(n)), A106298, A106304 (period of Lucas and Fibonacci 5-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p).

Programs

  • Maple
    P:= x^5-x^4-x^3-x^2-x-1:
    select(p -> [msolve(P,p)] = [], [seq(ithprime(i),i=1..10000)]); # Robert Israel, Mar 13 2024
  • Mathematica
    t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]]
  • Python
    from itertools import islice
    from sympy import Poly, nextprime
    from sympy.abc import x
    def A106284_gen(): # generator of terms
        from sympy.abc import x
        p = 2
        while True:
            if len(Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).ground_roots())==0:
                yield p
            p = nextprime(p)
    A106284_list = list(islice(A106284_gen(),20)) # Chai Wah Wu, Mar 14 2024

Extensions

Name corrected by Robert Israel, Mar 13 2024