A106309 Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period.
5, 7, 11, 13, 17, 31, 37, 41, 53, 79, 107, 199, 233, 239, 311, 331, 337, 389, 463, 523, 541, 547, 557, 563, 577, 677, 769, 853, 937, 971, 1009, 1021, 1033, 1049, 1061, 1201, 1237, 1291, 1307, 1361, 1427, 1453, 1543, 1657, 1699, 1723, 1747, 1753, 1759, 1787, 1801, 1811, 1861, 1877, 1997, 1999
Offset: 1
Keywords
Examples
a(3) = 11 is a term because the recurrence has period 16105 for all initial conditions except (0,0,0,0,0).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
- Robert Israel, Linear Recurrences With a Single Minimal Period
Programs
-
Maple
filter:= proc(p) local Q,q,F,i,z,d,k,kp,G,alpha; Q:= z^5 - z^4 - z^3 - z^2 - z - 1; if Irreduc(Q) mod p then return true fi; F:= (Factors(Q) mod p)[2]; if ormap(t -> t[2]>1, F) then return false fi; for i from 1 to nops(F) do q:= F[i][1]; d:= degree(q); if d = 1 then kp:= numtheory:-order(solve(q,z),p); else G:= GF(p,d, q); alpha:= G:-ConvertIn(z); kp:= G:-order(alpha); fi; if i = 1 then k:= kp elif kp <> k then return false fi; od; true end proc: select(filter, [seq(ithprime(i),i=1..1000)]);
Extensions
4259 found by D. S. McNeil.
Edited by Robert Israel, Mar 27 2024
Comments