cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106329 Numbers k such that k^2 = 8*j^2 + 9.

Original entry on oeis.org

3, 9, 51, 297, 1731, 10089, 58803, 342729, 1997571, 11642697, 67858611, 395508969, 2305195203, 13435662249, 78308778291, 456417007497, 2660193266691, 15504742592649, 90368262289203, 526704831142569, 3069860724566211, 17892459516254697, 104284896372961971
Offset: 1

Views

Author

Pierre CAMI, Apr 29 2005

Keywords

Comments

The ratio a(n)/(2*j(n)) tends to sqrt(2) as n increases.
After 3, first differences of A301383. - Bruno Berselli, Mar 22 2018
For n > 0, a(n+1) is the n-th almost Lucas-balancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Crossrefs

Programs

Formula

a(1)=3, a(2)=9 then a(n) = 6*a(n-1)-a(n-2).
G.f.: 3*x*(1 - 3*x)/(1 - 6*x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = (3/2)*A003499(n-1).
a(n) = 3*((3-2*sqrt(2))^(n-1) + (3+2*sqrt(2))^(n-1))/2. - Colin Barker, Oct 13 2015
E.g.f.: 3*exp(3*x)*(3*cosh(2*sqrt(2)*x) - 2*sqrt(2)*sinh(2*sqrt(2)*x)) - 9. - Stefano Spezia, Nov 25 2022