cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273052 Numbers n such that 7*n^2 + 8 is a square.

Original entry on oeis.org

2, 34, 542, 8638, 137666, 2194018, 34966622, 557271934, 8881384322, 141544877218, 2255836651166, 35951841541438, 572973628011842, 9131626206648034, 145533045678356702, 2319397104647059198, 36964820628674590466, 589117732954146388258, 9388918906637667621662
Offset: 1

Views

Author

Vincenzo Librandi, May 14 2016

Keywords

Crossrefs

Cf. Numbers n such that k*n^2+(k+1) is a square: A052530 (k=3), this sequence (k=7), A106328 (k=8), A106256 (k=12), A273053 (k=15), A273054 (k=19), A106331 (k=24).

Programs

  • Magma
    I:=[2,34]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]];
    
  • Mathematica
    LinearRecurrence[{16, -1}, {2, 34}, 30]
  • PARI
    Vec(x*(2+2*x)/(1-16*x+x^2) + O(x^50)) \\ Colin Barker, May 14 2016

Formula

O.g.f.: x*(2 + 2*x)/(1 - 16*x + x^2).
E.g.f.: 2*(1 + (3*sqrt(7)*sinh(3*sqrt(7)*x) - 7*cosh(3*sqrt(7)*x))*exp(8*x)/7). - Ilya Gutkovskiy, May 14 2016
a(n) = 16*a(n-1) - a(n-2).
a(n) = (-(8-3*sqrt(7))^n*(3+sqrt(7))-(-3+sqrt(7))*(8+3*sqrt(7))^n)/sqrt(7). - Colin Barker, May 14 2016

A106330 Numbers k such that k^2 = 24*j^2 + 25.

Original entry on oeis.org

5, 7, 11, 25, 59, 103, 245, 583, 1019, 2425, 5771, 10087, 24005, 57127, 99851, 237625, 565499, 988423, 2352245, 5597863, 9784379, 23284825, 55413131, 96855367, 230496005, 548533447, 958769291, 2281675225, 5429921339, 9490837543, 22586256245, 53750679943
Offset: 1

Views

Author

Pierre CAMI, Apr 29 2005

Keywords

Comments

The ratio k(n) /(2*j(n)) tends to sqrt(6) as n increases.
k(n) = 2*b + 1, for n > 0, where b is a side of the Heronian triangle (5, b, b+1). - Andrés Ventas, Dec 13 2024

Crossrefs

Cf. A106331.

Programs

  • PARI
    Vec(-x*(7*x^5+11*x^4+25*x^3-11*x^2-7*x-5)/(x^6-10*x^3+1) + O(x^100)) \\ Colin Barker, Apr 16 2014

Formula

Recurrence: k(1)=5, k(2)=7, k(3)=11, k(4)=25, k(5)=10*k(2)-k(3), k(6)=10*k(3)-k(2) then k(n)=10*k(n-3)-k(n-6).
From Ralf Stephan, Nov 15 2010: (Start)
G.f.: (-7x^5-11x^4-25x^3+11x^2+7x+5)/(x^6-10x^3+1).
a(3n+1) = 5*A001079(n), a(3n+2) = A077409(n), a(3n+3) = A077250(n). (End)

Extensions

More terms from Ralf Stephan, Nov 15 2010
More terms from Colin Barker, Apr 16 2014
Showing 1-2 of 2 results.