cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106351 Triangle read by rows: T(n,k) = number of compositions of n into k parts such that no two adjacent parts are equal.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 4, 2, 0, 0, 1, 4, 7, 2, 0, 0, 1, 6, 9, 6, 1, 0, 0, 1, 6, 15, 14, 3, 0, 0, 0, 1, 8, 21, 24, 15, 2, 0, 0, 0, 1, 8, 28, 46, 30, 10, 1, 0, 0, 0, 1, 10, 35, 66, 68, 30, 4, 0, 0, 0, 0, 1, 10, 46, 100, 119, 76, 24, 2, 0, 0, 0, 0, 1, 12, 54, 138, 204, 168, 69, 14, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Christian G. Bower, Apr 29 2005

Keywords

Examples

			T(6,3) = 7 because the compositions of 6 into 3 parts with no adjacent equal parts are 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 1+4+1.
Triangle begins:
  1;
  1, 0;
  1, 2,  0;
  1, 2,  1,  0;
  1, 4,  2,  0,  0;
  1, 4,  7,  2,  0, 0;
  1, 6,  9,  6,  1, 0, 0;
  1, 6, 15, 14,  3, 0, 0, 0;
  1, 8, 21, 24, 15, 2, 0, 0, 0;
  ...
		

Crossrefs

Row sums: A003242. Columns 3-6: A106352, A106353, A106354, A106355.
Cf. A131044 (at least two adjacent parts are equal).
T(2n,n) gives A221235.

Programs

  • Maple
    b:= proc(n, h, t) option remember;
          if n b(n, -1, k):
    seq(seq(T(n, k), k=1..n), n=1..15); # Alois P. Heinz, Oct 23 2011
  • Mathematica
    nn=10;CoefficientList[Series[1/(1-Sum[y x^i/(1+y x^i),{i,1,nn}]),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Nov 23 2013 *)
  • PARI
    gf(n,y)={1/(1 - sum(k=1, n, (-1)^(k+1)*x^k*y^k/(1-x^k) + O(x*x^n)))}
    for(n=1, 10, my(p=polcoeff(gf(n,y),n)); for(k=1, n, print1(polcoeff(p,k), ", ")); print); \\ Andrew Howroyd, Oct 12 2017

Formula

G.f.: 1/(1 - Sum_{k>0} (-1)^(k+1)*x^k*y^k/(1-x^k)).