cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005776 Exponents m_i associated with Weyl group W(E_8).

Original entry on oeis.org

1, 7, 11, 13, 17, 19, 23, 29
Offset: 1

Views

Author

Keywords

Comments

Numbers coprime to 30 in that number's reduced residue system. - Alonso del Arte, Oct 03 2017

References

  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 141.

Crossrefs

Programs

  • Magma
    Exponents(RootDatum("E8")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    Select[Range[30], GCD[30, #] == 1 &] (* Alonso del Arte, Oct 03 2017 *)
  • PARI
    select(n->gcd(n,30)==1, [1..29]) \\ Charles R Greathouse IV, Oct 17 2017

A106403 Primitive exponents of the Weyl group W(E_8).

Original entry on oeis.org

3, 15, 23, 27, 35, 39, 47, 59
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2005

Keywords

References

  • C. Chevalley, The Betti numbers of the exceptional Lie groups, pp. 21-24 of Proc. Internat Congress Math., Cambridge 1950, Amer. Math. Soc., 1952.

Crossrefs

Formula

Equals 2*A005776(n) + 1.

A106373 Primitive exponents of the Weyl group W(E_6).

Original entry on oeis.org

3, 9, 11, 15, 17, 23
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2005

Keywords

References

  • C. Chevalley, The Betti numbers of the exceptional Lie groups, pp. 21-24 of Proc. Internat Congress Math., Cambridge 1950, Amer. Math. Soc., 1952.

Crossrefs

Formula

Equals 2*A005556(n) + 1.

A109161 Triangle read by rows: T(n, k) = n*(n+9) + k + 5, with T(0, 0) = 5 and T(1, 0) = 15.

Original entry on oeis.org

5, 15, 16, 27, 28, 29, 41, 42, 43, 44, 57, 58, 59, 60, 61, 75, 76, 77, 78, 79, 80, 95, 96, 97, 98, 99, 100, 101, 117, 118, 119, 120, 121, 122, 123, 124, 141, 142, 143, 144, 145, 146, 147, 148, 149, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205
Offset: 1

Views

Author

Roger L. Bagula, May 06 2007

Keywords

Examples

			Triangle begins as:
   5;
  15, 16;
  27, 28, 29;
  41, 42, 43, 44;
  57, 58, 59, 60, 61;
  75, 76, 77, 78, 79, 80;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[n==0 && k==0, 5, If[k==0 && n==1, 15, n*(n+9) +k +5]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
  • Sage
    @CachedFunction
    def T(n, k):
        if (n==0 and k==0): return 5
        elif (k==0 and n==1): return 15
        else: return n*(n + 9) + k + 5
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2021

Formula

T(n, k) = n*(n+9) + k + 5, with T(0, 0) = 5 and T(1, 0) = 15.

Extensions

More terms and edits by G. C. Greubel, Feb 05 2021
Showing 1-4 of 4 results.