cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106402 Expansion of eta(q^3)^9 / eta(q)^3 in powers of q.

Original entry on oeis.org

1, 3, 9, 13, 24, 27, 50, 51, 81, 72, 120, 117, 170, 150, 216, 205, 288, 243, 362, 312, 450, 360, 528, 459, 601, 510, 729, 650, 840, 648, 962, 819, 1080, 864, 1200, 1053, 1370, 1086, 1530, 1224, 1680, 1350, 1850, 1560, 1944, 1584, 2208, 1845, 2451, 1803, 2592
Offset: 1

Views

Author

Michael Somos, May 02 2005

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 3 of the 74 eta-quotients listed in Table I of Martin (1996).
a(n+1) is the number of partition triples of n where each partition is 3-core (see Theorem 3.1 of Wang link).
Convolution cube of A033687.
Convolution square is A198958. - Michael Somos, Dec 26 2015

Examples

			G.f. = q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + 51*q^8 + ...
		

References

  • George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001). See p. 314, Eq. (14.2.14).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 3), 52); A[2]; /* Michael Somos, May 18 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, #^2 KroneckerSymbol[ n/#, 3] &]]; (* Michael Somos, Jul 19 2012 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3]^3 / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
    nmax = 40; Rest[CoefficientList[Series[x * Product[(1 - x^(3*k))^9 / (1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^9 / eta(x + A)^3, n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( n/d, 3)))};
    
  • PARI
    {a(n) = my(A, p, e, u); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; u = kronecker(-3, p); ((p^2)^(e+1) - u^(e+1)) / (p^2 - u)))};
    
  • PARI
    a(n) = sumdiv(n, d, ((d % 3) == 1)*(n/d)^2) - sumdiv(n, d, ((d % 3)== 2)*(n/d)^2); \\ Michel Marcus, Jul 14 2015
    

Formula

Expansion of (c(q) / 3)^3 in powers of q where c(q) is a cubic AGM theta function.
Euler transform of period 3 sequence [ 3, 3, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 6*u*v*w + 8*u*w^2 - u^2*w.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) = x * Product_{k>0} (1 - x^(3*k))^9 / (1 - x^k)^3.
a(n) is multiplicative and a(p^e) = ((p^2)^(e+1) - u^(e+1)) / (p^2 - u) where u = 0, 1, -1 when p == 0, 1, 2 (mod 3). - Michael Somos, Oct 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 27^(-1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109041.
a(3*n) = 9 * a(n). a(3*n + 1) = A231947(n). - Michael Somos, May 18 2015
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 4*Pi^3/(81*sqrt(3)) = 0.8840238... (A129404). - Amiram Eldar, Nov 09 2023