A106402 Expansion of eta(q^3)^9 / eta(q)^3 in powers of q.
1, 3, 9, 13, 24, 27, 50, 51, 81, 72, 120, 117, 170, 150, 216, 205, 288, 243, 362, 312, 450, 360, 528, 459, 601, 510, 729, 650, 840, 648, 962, 819, 1080, 864, 1200, 1053, 1370, 1086, 1530, 1224, 1680, 1350, 1850, 1560, 1944, 1584, 2208, 1845, 2451, 1803, 2592
Offset: 1
Examples
G.f. = q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + 51*q^8 + ...
References
- George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001). See p. 314, Eq. (14.2.14).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vaclav Kotesovec)
- Jonathan M. Borwein and Peter B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012). See page 697.
- Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- Hossein Movasati and Younes Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv preprint arXiv:1603.09411 [math.AG], 2016-2021.
- Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers, 2016.
- Liuquan Wang, Explicit Formulas for Partition Pairs and Triples with 3-Cores, arXiv:1507.03099 [math.NT], 2015.
Programs
-
Magma
A := Basis( ModularForms( Gamma1(3), 3), 52); A[2]; /* Michael Somos, May 18 2015 */
-
Mathematica
a[ n_] := If[ n < 1, 0, DivisorSum[ n, #^2 KroneckerSymbol[ n/#, 3] &]]; (* Michael Somos, Jul 19 2012 *) a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3]^3 / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *) nmax = 40; Rest[CoefficientList[Series[x * Product[(1 - x^(3*k))^9 / (1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^9 / eta(x + A)^3, n))};
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( n/d, 3)))};
-
PARI
{a(n) = my(A, p, e, u); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; u = kronecker(-3, p); ((p^2)^(e+1) - u^(e+1)) / (p^2 - u)))};
-
PARI
a(n) = sumdiv(n, d, ((d % 3) == 1)*(n/d)^2) - sumdiv(n, d, ((d % 3)== 2)*(n/d)^2); \\ Michel Marcus, Jul 14 2015
Formula
Expansion of (c(q) / 3)^3 in powers of q where c(q) is a cubic AGM theta function.
Euler transform of period 3 sequence [ 3, 3, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 6*u*v*w + 8*u*w^2 - u^2*w.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) = x * Product_{k>0} (1 - x^(3*k))^9 / (1 - x^k)^3.
a(n) is multiplicative and a(p^e) = ((p^2)^(e+1) - u^(e+1)) / (p^2 - u) where u = 0, 1, -1 when p == 0, 1, 2 (mod 3). - Michael Somos, Oct 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 27^(-1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109041.
a(3*n) = 9 * a(n). a(3*n + 1) = A231947(n). - Michael Somos, May 18 2015
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 4*Pi^3/(81*sqrt(3)) = 0.8840238... (A129404). - Amiram Eldar, Nov 09 2023
Comments