A106429 Smallest number beginning with 9 and having exactly n prime divisors counted with multiplicity.
97, 9, 92, 90, 918, 96, 972, 960, 9072, 9600, 90624, 9216, 93312, 90112, 903168, 98304, 995328, 917504, 9043968, 9175040, 90243072, 9437184, 95551488, 92274688, 924844032, 922746880, 9042919424, 905969664, 9172942848, 9059696640
Offset: 1
Examples
a(2) = 9 = 3^2.
Programs
-
PARI
a(n) = {i = 2^n; while ((digits(i)[1] != 9) || (bigomega(i)!=n), i++); i;} \\ Michel Marcus, Sep 14 2013
-
Python
from itertools import count from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A106429(n): if n == 1: return 97 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(1<
mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Aug 29 2024