A106458 Bernoulli number denominators, with zeros at the odd places.
1, 2, 6, 0, 30, 0, 42, 0, 30, 0, 66, 0, 2730, 0, 6, 0, 510, 0, 798, 0, 330, 0, 138, 0, 2730, 0, 6, 0, 870, 0, 14322, 0, 510, 0, 6, 0, 1919190, 0, 6, 0, 13530, 0, 1806, 0, 690, 0, 282, 0, 46410, 0, 66, 0, 1590, 0, 798, 0, 870, 0, 354, 0, 56786730
Offset: 0
Examples
Solutions to the system of simultaneous equations with 5 rows: (-1/2, 1/6, 0, -1/30, 0).
References
- Robert M. Young, "Excursions in Calculus" MAA, 1992, p. 91 J. H. Conway & R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 108
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
Crossrefs
Cf. A159688. - Gary W. Adamson, Apr 19 2009
Programs
-
Mathematica
a[n_] := If[OddQ[n] && n>2, 0, BernoulliB[n] // Denominator]; Table[a[n],{n,0,60}] (* Jean-François Alcover, Dec 29 2012 *) Join[{1,2},Riffle[BernoulliB[2*Range[50]]//Denominator,0]] (* Harvey P. Dale, Sep 29 2024 *)
-
PARI
A106458(n) = if((n%2)&&n>1,0,denominator(bernfrac(n))); \\ Antti Karttunen, Dec 19 2018
Formula
In addition to generating functions as shown in A006954, the Bernoulli numbers starting with B(1) = -1/2 may be generated from the following system of simultaneous equations: (exemplified by 5 rows): 2 0 0 0 0 = -1 3 3 0 0 0 = -1 4 6 4 0 0 = -1 5 10 10 5 0 = -1 6 15 20 15 6 = -1.
Extensions
Typo in one term corrected by Paul Curtz, Jul 16 2008
Comments