cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106515 A Fibonacci-Pell convolution.

Original entry on oeis.org

1, 2, 6, 15, 38, 94, 231, 564, 1372, 3329, 8064, 19512, 47177, 114010, 275430, 665247, 1606534, 3879302, 9366735, 22615356, 54601628, 131825377, 318263328, 768369744, 1855031473, 4478479058, 10812064614, 26102729679, 63017720390
Offset: 0

Views

Author

Paul Barry, May 05 2005

Keywords

Comments

Diagonal sums of A106513.

Crossrefs

Programs

  • Magma
    Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >;
    [Pell(n) + Pell(n+1) - Fibonacci(n): n in [0..30]]; // G. C. Greubel, Aug 05 2021
    
  • Mathematica
    Table[Fibonacci[n, 2] + Fibonacci[n+1, 2] - Fibonacci[n], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
    LinearRecurrence[{3,0,-3,-1},{1,2,6,15},30] (* Harvey P. Dale, Feb 08 2025 *)
  • Sage
    [lucas_number1(n+1, 2, -1) + lucas_number1(n, 2, -1) - lucas_number1(n, 1, -1) for n in (0..30)] # G. C. Greubel, Aug 05 2021

Formula

G.f.: (1-x)/((1-x-x^2)*(1-2*x-x^2)).
a(n) = Sum_{k=0..n} Fibonacci(n-k-1)*Pell(k+1).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor((n-k+1)/2)} binomial(n-k+1, 2*j+k+1)*2^j.
a(n) = Pell(n) + Pell(n+1) - Fibonacci(n). - Ralf Stephan, Jun 02 2007
a(n) = 3*a(n-1) - 3*a(n-3) - a(n-4). - Wesley Ivan Hurt, May 27 2021