A106515 A Fibonacci-Pell convolution.
1, 2, 6, 15, 38, 94, 231, 564, 1372, 3329, 8064, 19512, 47177, 114010, 275430, 665247, 1606534, 3879302, 9366735, 22615356, 54601628, 131825377, 318263328, 768369744, 1855031473, 4478479058, 10812064614, 26102729679, 63017720390
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See pp. 28, 51, 58.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,-1).
Programs
-
Magma
Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >; [Pell(n) + Pell(n+1) - Fibonacci(n): n in [0..30]]; // G. C. Greubel, Aug 05 2021
-
Mathematica
Table[Fibonacci[n, 2] + Fibonacci[n+1, 2] - Fibonacci[n], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *) LinearRecurrence[{3,0,-3,-1},{1,2,6,15},30] (* Harvey P. Dale, Feb 08 2025 *)
-
Sage
[lucas_number1(n+1, 2, -1) + lucas_number1(n, 2, -1) - lucas_number1(n, 1, -1) for n in (0..30)] # G. C. Greubel, Aug 05 2021
Formula
G.f.: (1-x)/((1-x-x^2)*(1-2*x-x^2)).
a(n) = Sum_{k=0..n} Fibonacci(n-k-1)*Pell(k+1).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..floor((n-k+1)/2)} binomial(n-k+1, 2*j+k+1)*2^j.
a(n) = Pell(n) + Pell(n+1) - Fibonacci(n). - Ralf Stephan, Jun 02 2007
a(n) = 3*a(n-1) - 3*a(n-3) - a(n-4). - Wesley Ivan Hurt, May 27 2021
Comments