cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106520 a(n) = A068875(n-1) - A003239(n).

Original entry on oeis.org

1, 0, 0, 0, 2, 4, 18, 48, 156, 472, 1526, 4852, 16000, 52940, 178276, 605520, 2079862, 7201084, 25138878, 88358520, 312576996, 1112087012, 3977502766, 14294093652, 51596165872, 186997738504, 680272334202, 2483340387644, 9094756956908
Offset: 1

Views

Author

F. Chapoton, May 30 2005

Keywords

Comments

This is the multiplicity of the trivial module in a sequence of modules of dimension (2*n-2)!/n! over the symmetric groups S_n, induced from modules of dimension (2*n-2)!/(n!*(n-1)!) (Catalan) over the cyclic groups C_n.

Crossrefs

Programs

  • Magma
    A106520:= func< n | 2*Catalan(n-1) - (1/(2*n))*(&+[Round(Gamma(2*n/d +1)/Gamma(n/d +1)^2)*EulerPhi(d): d in Divisors(n)]) >;
    [A106520(n): n in [1..40]]; // G. C. Greubel, Aug 06 2021
    
  • Maple
    with(numtheory);
    a:= proc(n) (2/n)*binomial(2*n-2, n-1) - (1/(2*n))*add(phi(d)*binomial(2*n/d, n/d), d = divisors(n)) end:
    seq(a(n), n = 1..40);
  • Mathematica
    a[n_]:= 2/n*Binomial[2*n-2, n-1] - 1/(2*n)*DivisorSum[n, EulerPhi[#]* Binomial[2*n/#, n/#]&]; Table[a[n], {n, 40}] (* Jean-François Alcover, Feb 20 2017 *)
  • PARI
    a(n) = (2/n) * binomial(2*n-2, n-1) - 1/(2*n) * sumdiv(n, d, eulerphi(d) * binomial(2*n/d, n/d)); \\ Michel Marcus, Aug 08 2021
  • Sage
    def a(n): return 2*catalan_number(n-1) - (1/(2*n))*sum(euler_phi(n/d)*binomial(2*d, d) for d in divisors(n))
    [a(n) for n in (1..40)] # G. C. Greubel, Aug 06 2021
    

Formula

a(n) = (2/n) * binomial(2*n-2, n-1) - 1/(2*n) * Sum_{d divides n} phi(d) * binomial(2*n/d, n/d).
a(n) = 2*A000108(n-1) - (1/(2*n))*Sum_{d divides n} (n/d + 1)*A000108(n/d) * A000010(d). - G. C. Greubel, Aug 06 2021

Extensions

Terms a(1) to a(4) prepended by G. C. Greubel, Aug 06 2021