A106521 Numbers m such that Sum_{k=0..10} (m+k)^2 is a square.
18, 38, 456, 854, 9192, 17132, 183474, 341876, 3660378, 6820478, 73024176, 136067774, 1456823232, 2714535092, 29063440554, 54154634156, 579811987938, 1080378148118, 11567176318296, 21553408328294
Offset: 1
Examples
Since 18^2 + 19^2 + ... + 28^2 = 5929 = 77^2, 18 is in the sequence. - _Michael B. Porter_, Aug 07 2016
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- Dario Alpern, Quadratic two integer variable equation solver
- Index entries for linear recurrences with constant coefficients, signature (1,20,-20,-1,1).
Programs
-
Mathematica
LinearRecurrence[{1,20,-20,-1,1},{18,38,456,854,9192},30] (* Harvey P. Dale, May 07 2011 *)
-
PARI
A106521(n)={local(xy=[ -4-2*(n%2);11],PQRS=[10,3;33,10],KL=[45;165]);until(0>=n-=2,xy=PQRS*xy+KL);xy[1]} \\ M. F. Hasler, Jan 27 2008
Formula
G.f.: 2*x*(9+10*x+29*x^2-x^3-2*x^4)/(1-x)/(1-20*x^2+x^4). - Vladeta Jovovic, May 31 2005; adapted to the offset by Bruno Berselli, May 16 2011
a(1)=18, a(2)=38, a(3)=456, a(4)=854, a(5)=9192; thereafter a(n)=a(n-1)+20*a(n-2)- 20*a(n-3)-a(n-4)+a(n-5). - Harvey P. Dale, May 07 2011
a(n) = A198949(n+1)-5. - Bruno Berselli, Feb 12 2012
a(1)=18, a(2)=38, a(3)=456, a(4)=854; thereafter a(n) = 20*a(n-2) - a(n-4) + 90. - Daniel Mondot, Aug 05 2016
Extensions
Edited and extended by M. F. Hasler, Jan 27 2008
Comments