cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106525 Values of x in x^2 - 49 = 2*y^2.

Original entry on oeis.org

9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005

Keywords

Comments

From Wolfdieter Lang, Sep 27 2016: (Start)
These are the x members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2.
The y(n) members are given in 2*A276600(n+2).
This sequence is composed of the two y members of the two proper classes of solutions of the Pell equation x^2 - 2*y^2 = 7^2 and of 7 times the proper solutions X of the Pell equation X^2 - 2*Y^2 = +1. See A275793, A275795 and 7*A001541. See A275793 for further information, and the Nagell reference. (End)
The sums of the consecutive integers in the following sequences will be squares: for n, i >= 1, if mod(i,3)=0 then 7*n+1, 7*n+2, ..., a(i)*n + (A001541(i/3)-1)/2; otherwise, if mod(i,3)=1 or 2 then 7*n+4, 7*n+5, ..., a(i)*n + (a(i)-1)/2.

Examples

			In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - _Wolfdieter Lang_, Sep 27 2016
		

Crossrefs

Programs

  • Magma
    I:=[9,11,21,43,57,119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {9,11,21,43,57,119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
  • PARI
    Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
    
  • Sage
    def A106525_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
    a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021

Formula

a(3*k) = A001541(k)*7 for k >= 2.
a(3*k+1) = (A001541(k+2) + A001541(k-1) + A001541(k) - A001541(k+1))/2;
a(3*k+2) = (A001541(k+2) + A001541(k-1) - A001541(k) + A001541(k+1))/2.
a(3*n) = A275793(n), a(3*n+1) = A275795(n), a(3*n+2) = 7*A001541(n+1), n >= 0. - Wolfdieter Lang, Sep 27 2016
From Colin Barker, Mar 29 2012: (Start)
a(n) = 6*a(n-3) - a(n-6).
G.f.: x*(9 + 11*x + 21*x^2 - 11*x^3 - 9*x^4 - 7*x^5)/(1 - 6*x^3 + x^6). (End)

Extensions

Entry revised by N. J. A. Sloane, Oct 26 2018 at the suggestion of Georg Fischer.