A106530 Least common multiple of all parts in Zeckendorf representation of n.
1, 2, 3, 3, 5, 5, 10, 8, 8, 8, 24, 24, 13, 13, 26, 39, 39, 65, 65, 130, 21, 21, 42, 21, 21, 105, 105, 210, 168, 168, 168, 168, 168, 34, 34, 34, 102, 102, 170, 170, 170, 136, 136, 136, 408, 408, 442, 442, 442, 1326, 1326, 2210, 2210, 2210, 55, 55, 110, 165, 165, 55, 55, 110, 440, 440
Offset: 1
Examples
n=33: 21+8+3+1 = 33 -> a(33) = lcm(21,8,3,1) = (21*8*3*1)/3 = 168.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..16384 (first 10000 terms from Reinhard Zumkeller)
- Eric Weisstein's World of Mathematics, Zeckendorf Representation
- Index entries for sequences related to lcm's.
Programs
-
Haskell
a106530 = foldr lcm 1 . a035516_row -- Reinhard Zumkeller, Mar 10 2013
-
Maple
F:= combinat[fibonacci]: a:= proc(n) option remember; local j; if n=0 then 1 else for j from 2 while F(j+1)<=n do od; ilcm(a(n-F(j)), F(j)) fi end: seq(a(n), n=1..64); # Alois P. Heinz, Mar 17 2018
-
Mathematica
t = Fibonacci /@ Range@ 21; Table[LCM @@ If[MemberQ[t, n], {n}, Most@ MapAt[# + 1 &, Abs@ Differences@ FixedPointList[# - First@ Reverse@ TakeWhile[t, Function[k, # >= k]] &, n], -1]], {n, 61}] (* Michael De Vlieger, May 17 2016 *)
Comments