cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106530 Least common multiple of all parts in Zeckendorf representation of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 5, 10, 8, 8, 8, 24, 24, 13, 13, 26, 39, 39, 65, 65, 130, 21, 21, 42, 21, 21, 105, 105, 210, 168, 168, 168, 168, 168, 34, 34, 34, 102, 102, 170, 170, 170, 136, 136, 136, 408, 408, 442, 442, 442, 1326, 1326, 2210, 2210, 2210, 55, 55, 110, 165, 165, 55, 55, 110, 440, 440
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2005

Keywords

Comments

Records: A106531(n) = a(A106532(n)).
a(n) = lcm_{k=0..A007895(n)-1} A035516(n,k). - Reinhard Zumkeller, Mar 10 2013

Examples

			n=33: 21+8+3+1 = 33 -> a(33) = lcm(21,8,3,1) = (21*8*3*1)/3 = 168.
		

Crossrefs

Programs

  • Haskell
    a106530 = foldr lcm 1 . a035516_row -- Reinhard Zumkeller, Mar 10 2013
  • Maple
    F:= combinat[fibonacci]:
    a:= proc(n) option remember; local j;
          if n=0 then 1
        else for j from 2 while F(j+1)<=n do od;
             ilcm(a(n-F(j)), F(j))
          fi
        end:
    seq(a(n), n=1..64);  # Alois P. Heinz, Mar 17 2018
  • Mathematica
    t = Fibonacci /@ Range@ 21; Table[LCM @@ If[MemberQ[t, n], {n}, Most@ MapAt[# + 1 &, Abs@ Differences@ FixedPointList[# - First@ Reverse@ TakeWhile[t, Function[k, # >= k]] &, n], -1]], {n, 61}] (* Michael De Vlieger, May 17 2016 *)