A106535 Numbers k such that the smallest x > 1 for which Fibonacci(x) == 0 mod k is x = k - 1.
11, 19, 31, 59, 71, 79, 131, 179, 191, 239, 251, 271, 311, 359, 379, 419, 431, 439, 479, 491, 499, 571, 599, 631, 659, 719, 739, 751, 839, 971, 1019, 1039, 1051, 1091, 1171, 1259, 1319, 1399, 1439, 1451, 1459, 1499, 1531, 1559, 1571, 1619, 1759, 1811, 1831
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
- Alfred Brousseau, Primes which are factors of all Fibonacci sequences, Fib. Quart., 2 (1964), 33-38.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972.
- Jianing Song, Proof that all terms are prime
Crossrefs
Programs
-
GAP
Filtered([2..2000], n -> Fibonacci(n-1) mod n = 0 and Filtered( [2..n-2], x -> Fibonacci(x) mod n = 0 ) = [] );
-
Maple
A106535 := proc(n) option remember; if n = 1 then 11; else for a from procname(n-1)+1 do if A001177(a) = a-1 then return a; end if; end do: end if; end proc: # R. J. Mathar, Jul 09 2012 # Alternative: fmod:= proc(a,b) local A; uses LinearAlgebra[Modular]; A:= Mod(b, <<1,1>|<1,0>>,integer[8]); MatrixPower(b,A,a)[1,2]; end proc: filter:= proc(n) local cands; if fmod(n-1,n) <> 0 then return false fi; cands:= map(t -> (n-1)/t, numtheory:-factorset(n-1)); andmap(c -> (fmod(c,n) > 0), cands); end proc: select(filter, [$2..10^4]); # Robert Israel, Oct 13 2015
-
Mathematica
f[n_] := Block[{x = 2}, While[Mod[Fibonacci@ x, n] != 0, x++]; x];Select[Range@ 1860, f@ # == # - 1 &] (* Michael De Vlieger, Oct 13 2015 *)
-
PARI
isok(n) = {x = 2; while(fibonacci(x) % n, x++); x == n-1;} \\ Michel Marcus, Oct 20 2015
Formula
{n: A001177(n) = n-1}. - R. J. Mathar, Jul 09 2012
Extensions
Corrected by T. D. Noe, Oct 25 2006
Comments