cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106545 a(n) = n^2 if n^2 is the sum of two primes, otherwise a(n) = 0.

Original entry on oeis.org

0, 4, 9, 16, 25, 36, 49, 64, 81, 100, 0, 144, 169, 196, 225, 256, 0, 324, 361, 400, 441, 484, 0, 576, 0, 676, 729, 784, 841, 900, 0, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 0, 1600, 0, 1764, 1849, 1936, 0, 2116, 2209, 2304, 2401, 2500, 0, 2704, 0, 2916, 3025
Offset: 1

Views

Author

Alexandre Wajnberg, May 08 2005

Keywords

Comments

For odd n, n^2 is odd so the two primes must be opposite in parity. Lesser prime must be 2 and greater prime must be n^2-2. Thus for odd n, n^2 is the sum of two primes iff n^2-2 is prime.

Examples

			a(2) = 2^2 = 4 = 2+2, a(5) = 5^2 = 25 = 23+2 (two primes).
a(1) = 0 because the sum of two primes is at least 4 and a(11) = 0 because 11^2 - 2 = 119 = 7*17 is composite.
		

Crossrefs

Programs

  • Mathematica
    stpQ[n_]:=If[OddQ[n],PrimeQ[n^2-2],AnyTrue[n^2-Prime[Range[ PrimePi[ n^2]]], PrimeQ]]; Table[If[stpQ[n],n^2,0],{n,60}] (* The program uses the AnyTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 21 2018 *)

Formula

a(n) = n^2 - A106544(n).

Extensions

Edited and extended by Klaus Brockhaus and Ray Chandler, May 12 2005