cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106582 Numbers which are the concatenation of two primes.

Original entry on oeis.org

22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 112, 113, 115, 117, 132, 133, 135, 137, 172, 173, 175, 177, 192, 193, 195, 197, 211, 213, 217, 219, 223, 229, 231, 232, 233, 235, 237, 241, 243, 247, 253, 259, 261, 267, 271, 273, 279, 283, 289
Offset: 1

Views

Author

Keywords

Comments

A105184 and A121609 are subsequences.

Examples

			133 is in the sequence because 133 = 13*10+3 = A000040(6)*10+A000040(2).
		

Crossrefs

Programs

  • Mathematica
    nn=500; t=Union[Reap[Do[n=FromDigits[Join[IntegerDigits[Prime[i]], IntegerDigits[Prime[j]]]]; If[n<=nn, Sow[n]], {i,PrimePi[nn/10]}, {j,PrimePi[nn/IntegerDigits[nn][[1]]]}]][[2,1]]] (* T. D. Noe, Mar 11 2011 *)
    Take[FromDigits[Flatten[IntegerDigits/@#]]&/@Tuples[Prime[Range[30]],2]//Union,60] (* Harvey P. Dale, May 28 2025 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        for k in count(1):
            s = str(k)
            if any(s[i] != '0' and isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))):
                yield k
    print(list(islice(agen(), 55))) # Michael S. Branicky, Feb 26 2022

Extensions

Corrected by Arkadiusz Wesolowski, Mar 11 2011