A106582 Numbers which are the concatenation of two primes.
22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 112, 113, 115, 117, 132, 133, 135, 137, 172, 173, 175, 177, 192, 193, 195, 197, 211, 213, 217, 219, 223, 229, 231, 232, 233, 235, 237, 241, 243, 247, 253, 259, 261, 267, 271, 273, 279, 283, 289
Offset: 1
Examples
133 is in the sequence because 133 = 13*10+3 = A000040(6)*10+A000040(2).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 17257
Programs
-
Mathematica
nn=500; t=Union[Reap[Do[n=FromDigits[Join[IntegerDigits[Prime[i]], IntegerDigits[Prime[j]]]]; If[n<=nn, Sow[n]], {i,PrimePi[nn/10]}, {j,PrimePi[nn/IntegerDigits[nn][[1]]]}]][[2,1]]] (* T. D. Noe, Mar 11 2011 *) Take[FromDigits[Flatten[IntegerDigits/@#]]&/@Tuples[Prime[Range[30]],2]//Union,60] (* Harvey P. Dale, May 28 2025 *)
-
Python
from sympy import isprime from itertools import count, islice def agen(): # generator of terms for k in count(1): s = str(k) if any(s[i] != '0' and isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))): yield k print(list(islice(agen(), 55))) # Michael S. Branicky, Feb 26 2022
Extensions
Corrected by Arkadiusz Wesolowski, Mar 11 2011
Comments