cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106624 Expansion of g.f.: (1 - x^2 + x^3)/((1-x^2)*(1-2*x^2)).

Original entry on oeis.org

1, 0, 2, 1, 4, 3, 8, 7, 16, 15, 32, 31, 64, 63, 128, 127, 256, 255, 512, 511, 1024, 1023, 2048, 2047, 4096, 4095, 8192, 8191, 16384, 16383, 32768, 32767, 65536, 65535, 131072, 131071, 262144, 262143, 524288, 524287, 1048576, 1048575, 2097152
Offset: 0

Views

Author

Robert H Barbour, May 10 2005

Keywords

Comments

Cumulative column frequency of occurrence of 0's and 1's iterated in a binary tree where each node in the tree holds a value of 0 or 1, beginning with a count of 1.

References

  • Douglas Comer, Ubiquitous B-Tree, ACM Computing Surveys (CSUR), (1979), Volume 11 Issue 2.
  • Huffman, D. A., A method for the construction of minimum redundancy codes, Proc. IRE 40 (1951), 1098-1101.
  • Knuth, D. E., Dynamic Huffman coding. J. Algorithms 6 (1985), 163-180.

Crossrefs

Cf. A016116, A014535, A037026, A058518 - A058521, A000079 (bisection), A000225 (bisection).

Programs

  • Magma
    [2^Floor(n/2) + Floor((-1)^n - 1)/2: n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
    
  • Maple
    A106624 := proc(N)
        2^floor(n/2)+((-1)^n-1)/2 ;
    end proc:
    seq(A106624(n),n=0..20) ; # R. J. Mathar, Apr 14 2018
  • Mathematica
    Table[2^Floor[n/2] +Floor[(-1)^n-1]/2, {n,0,50}] (* G. C. Greubel, Feb 19 2019 *)
  • PARI
    vector(50,n, n--; 2^floor(n/2) +floor((-1)^n-1)/2) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [2^floor(n/2) +floor((-1)^n-1)/2 for n in (0..50)] # G. C. Greubel, Feb 19 2019

Formula

a(n) = 2^floor(n/2) + floor((-1)^n - 1)/2. - N. J. A. Sloane, May 15 2005

Extensions

New definition from N. J. A. Sloane, May 15 2008
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar