cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106640 Row sums of A059346.

Original entry on oeis.org

1, 1, 4, 11, 36, 117, 393, 1339, 4630, 16193, 57201, 203799, 731602, 2643903, 9611748, 35130195, 129018798, 475907913, 1762457595, 6550726731, 24428808690, 91377474411, 342763939656, 1289070060903, 4859587760076, 18360668311027, 69514565858653, 263693929034909
Offset: 0

Views

Author

Philippe Deléham, May 26 2005

Keywords

Comments

a(n) = p(n + 1) where p(x) is the unique degree-n polynomial such that p(k) = Catalan(k) for k = 0, 1, ..., n. - Michael Somos, Jan 05 2012
Number of Dyck (n+1)-paths whose minimum ascent length is 1. - David Scambler, Aug 22 2012
From Alois P. Heinz, Jun 29 2014: (Start)
a(n) is the number of ordered rooted trees with n+2 nodes such that the minimal outdegree equals 1. a(2) = 4:
o o o o
| | / \ / \
o o o o o o
| / \ | |
o o o o o
|
o
(End)
Number of non-crossing partitions of {1,2,..,n+1} that contain cyclical adjacencies. a(2) = 4, [12|3, 13|2, 1|23, 123]. - Yuchun Ji, Nov 13 2020

Examples

			1 + x + 4*x^2 + 11*x^3 + 36*x^4 + 117*x^5 + 393*x^6 + 1339*x^7 + 4630*x^8 + ...
a(2) = 4 since p(x) = (x^2 - x + 2) / 2 interpolates p(0) = 1, p(1) = 1, p(2) = 2, and p(3) = 4. - _Michael Somos_, Jan 05 2012
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1],
          ((30*n^3-44*n^2-22*n+24)*a(n-1)-(25*n^3-105*n^2+140*n-48)*a(n-2)
           -6*(n-1)*(5*n-4)*(2*n-3)*a(n-3))/(n*(n+2)*(5*n-9)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 29 2014
  • Mathematica
    max = 30; t = Table[Differences[Table[CatalanNumber[k], {k, 0, max}], n], {n, 0, max}]; a[n_] := Sum[t[[n-k+1, k]], {k, 1, n}]; Array[a, max] (* Jean-François Alcover, Jan 21 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n++; subst( polinterpolate( vector(n, k, binomial( 2*k - 2, k - 1) / k)), x, n + 1))} /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 / (sqrt( 1 - 2*x - 3*x^2 + A) + (1 + x) * sqrt( 1 - 4*x + A)) ,n))} /* Michael Somos, Jan 05 2012 */

Formula

G.f.: (sqrt( 1 - 2*x - 3*x^2 ) / (1 + x) - sqrt( 1 - 4*x )) / (2*x^2) = 2 / (sqrt( 1 - 2*x - 3*x^2 ) + (1 + x) * sqrt( 1 - 4*x )). - Michael Somos, Jan 05 2012
a(n) = A000108(n+1) - A005043(n+1).
a(n) ~ 2^(2*n+2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jan 21 2017
a(n) = A000296(n+2) - A247494(n+1); i.e., remove the crossing partitions from the partitions with cyclical adjacencies. - Yuchun Ji, Nov 17 2020

Extensions

Typo in a(20) corrected and more terms from Alois P. Heinz, Jun 29 2014