A244530
Number T(n,k) of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 2, 0, 1, 0, 36, 5, 0, 0, 1, 0, 117, 11, 3, 0, 0, 1, 0, 393, 28, 7, 0, 0, 0, 1, 0, 1339, 78, 8, 4, 0, 0, 0, 1, 0, 4630, 201, 21, 9, 0, 0, 0, 0, 1, 0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1, 0, 57201, 1441, 121, 11, 11, 0, 0, 0, 0, 0, 1
Offset: 1
T(5,1) = 11:
o o o o o o o o o o o
| | | | / \ / \ / \ | /|\ /|\ /|\
o o o o o o o o o o o o o o o o o o o o
| | / \ / \ | | | | /|\ | | |
o o o o o o o o o o o o o o o o
| / \ | | | |
o o o o o o o
|
o
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 11, 2, 0, 1;
0, 36, 5, 0, 0, 1;
0, 117, 11, 3, 0, 0, 1;
0, 393, 28, 7, 0, 0, 0, 1;
0, 1339, 78, 8, 4, 0, 0, 0, 1;
0, 4630, 201, 21, 9, 0, 0, 0, 0, 1;
0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1;
Columns k=0-10 give:
A063524,
A106640(n-2),
A244531,
A244532,
A244533,
A244534,
A244535,
A244536,
A244537,
A244538,
A244539.
Cf.
A244454 (unordered unlabeled rooted trees).
-
b:= proc(n, t, k) option remember; `if`(n=0,
`if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
b(n-j, max(0, t-1), k), j=1..n)))
end:
T:= (n, k)-> b(n-1, k$2) -`if`(n=1 and k=0, 0, b(n-1, k+1$2)):
seq(seq(T(n, k), k=0..n-1), n=1..14);
-
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t>n, 0, Sum[b[j-1, k, k]*b[n-j, Max[0, t-1], k], {j, 1, n}]]]; T[n_, k_] := b[n-1, k, k] - If[n == 1 && k == 0, 0, b[n-1, k+1, k+1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 13 2015, translated from Maple *)
A059346
Difference array of Catalan numbers A000108 read by antidiagonals.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 1, 2, 3, 5, 3, 4, 6, 9, 14, 6, 9, 13, 19, 28, 42, 15, 21, 30, 43, 62, 90, 132, 36, 51, 72, 102, 145, 207, 297, 429, 91, 127, 178, 250, 352, 497, 704, 1001, 1430, 232, 323, 450, 628, 878, 1230, 1727, 2431, 3432, 4862, 603, 835, 1158, 1608, 2236, 3114
Offset: 0
Array starts:
1 1 2 5 14 42 132 429
0 1 3 9 28 90 297 1001
1 2 6 19 62 207 704 2431
1 4 13 43 145 497 1727 6071
3 9 30 102 352 1230 4344 15483
6 21 72 250 878 3114 11139 40143
15 51 178 628 2236 8025 29004 105477
36 127 450 1608 5789 20979 76473 280221
91 323 1158 4181 15190 55494 203748 751422
232 835 3023 11009 40304 148254 547674 2031054
603 2188 7986 29295 107950 399420 1483380 5527750
Triangle starts:
1;
0, 1;
1, 1, 2;
1, 2, 3, 5;
3, 4, 6, 9, 14;
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- Zhousheng Mei, Suijie Wang, Pattern Avoidance of Generalized Permutations, arXiv:1804.06265 [math.CO], 2018.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024. See p. 36.
-
T := (n,k) -> (-1)^(n-k)*binomial(2*k,k)*hypergeom([k-n,k+1/2], [k+2], 4)/(k+1): seq(seq(simplify(T(n,k)), k=0..n), n=0..10);
# Peter Luschny, Aug 16 2012, updated May 25 2021
-
max = 11; t = Table[ Differences[ Table[ CatalanNumber[k], {k, 0, max}], n], {n, 0, max}]; Flatten[ Table[t[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011 *)
-
def T(n, k) :
if k > n : return 0
if n == k : return binomial(2*n, n)/(n+1)
return T(n-1, k) - T(n, k+1)
A059346 = lambda n,k: (-1)^(n-k)*T(n, k)
for n in (0..5): [A059346(n,k) for k in (0..n)] # Peter Luschny, Aug 16 2012
More terms from Larry Reeves (larryr(AT)acm.org), Feb 16 2001
A178517
Triangle read by rows: T(n,k) is the number of non-derangement permutations of {1,2,...,n} having genus k (see first comment for definition of genus).
Original entry on oeis.org
1, 1, 0, 4, 0, 0, 11, 4, 0, 0, 36, 40, 0, 0, 0, 117, 290, 48, 0, 0, 0, 393, 1785, 1008, 0, 0, 0, 0, 1339, 9996, 12712, 1440, 0, 0, 0, 0, 4630, 52584, 123858, 48312, 0, 0, 0, 0, 0, 16193, 264720, 1027446, 904840, 80640, 0, 0, 0, 0, 0, 57201, 1290135, 7627158, 12449800, 3807936, 0
Offset: 1
T(3,0)=4 because all non-derangements of {1,2,3}, namely 123=(1)(2)(3), 132=(1)(23), 213=(12)(3), and 321=(13)(2) have genus 0. This follows easily from the fact that a permutation p of {1,2,...,n} has genus 0 if and only if the cycle decomposition of p gives a noncrossing partition of {1,2,...,n} and each cycle of p is increasing (see Lemma 2.1 of the Dulucq-Simion reference).
Triangle starts:
[ 1] 1,
[ 2] 1, 0,
[ 3] 4, 0, 0,
[ 4] 11, 4, 0, 0,
[ 5] 36, 40, 0, 0, 0,
[ 6] 117, 290, 48, 0, 0, 0,
[ 7] 393, 1785, 1008, 0, 0, 0, 0,
[ 8] 1339, 9996, 12712, 1440, 0, 0, 0, 0,
[ 9] 4630, 52584, 123858, 48312, 0, 0, 0, 0, 0,
[10] 16193, 264720, 1027446, 904840, 80640, 0, 0, 0, 0, 0,
[11] 57201, 1290135, 7627158, 12449800, 3807936, 0, 0, 0, 0, 0, 0,
[12] 203799, 6133930, 52188774, 140356480, 96646176, 7257600, 0, ...,
[13] 731602, 28603718, 335517468, 1373691176, 1749377344, 448306560, 0, ...,
...
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8 (1998), 169-191.
Cf.
A177267 (genus of all permutations).
Cf.
A178514 (genus of derangements),
A178515 (genus of involutions),
A178516 (genus of up-down permutations),
A178518 (permutations of [n] having genus 0 and p(1)=k),
A185209 (genus of connected permutations).
-
n := 7: with(combinat): P := permute(n): inv := proc (p) local j, q: for j to nops(p) do q[p[j]] := j end do: [seq(q[i], i = 1 .. nops(p))] end proc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: nrcyc := proc (p) local pc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: b := proc (p) local c: c := [seq(i+1, i = 1 .. nops(p)-1), 1]: [seq(c[p[j]], j = 1 .. nops(p))] end proc: gen := proc (p) options operator, arrow: (1/2)*nops(p)+1/2-(1/2)*nrcyc(p)-(1/2)*nrcyc(b(inv(p))) end proc: NDER := {}: for i to factorial(n) do if nrfp(P[i]) > 0 then NDER := `union`(NDER, {P[i]}) else end if end do: f[n] := sort(add(t^gen(NDER[j]), j = 1 .. nops(NDER))): seq(coeff(f[n], t, j), j = 0 .. floor((1/2)*n)-1); # yields the entries in the specified row n
A244455
Number of unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals 1.
Original entry on oeis.org
1, 1, 3, 7, 17, 42, 105, 267, 684, 1775, 4639, 12238, 32491, 86859, 233496, 631082, 1713613, 4673455, 12795426, 35159212, 96927479, 268021520, 743188706, 2066071045, 5757360011, 16079027344, 44997313684, 126166307275, 354384737204, 997083779801, 2809751278062
Offset: 2
a(5) = 7:
o o o o o o o
| | | / \ / \ | /|\
o o o o o o o o o o o
| | / \ | | | /|\ |
o o o o o o o o o o o
| / \ | |
o o o o o
|
o
Cf.
A106640 (the same for ordered rooted trees).
-
b:= proc(n, i, t, k) option remember; `if`(n=0, `if`(t in [0, k],
1, 0), `if`(i<1 or t>n, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, max(0,t-j), k), j=0..n/i)))
end:
a:= n-> b(n-1$2, 1$2) -b(n-1$2, 2$2):
seq(a(n), n=2..35);
-
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, Max[0, t - j], k], {j, 0, n/i}]] // FullSimplify]; a[n_] := b[n - 1, n - 1, 1, 1] - b[n - 1, n - 1, 2, 2]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Feb 06 2015, after Maple *)
A247494
Number of crossing partitions of {1,2,...,n} that contain singletons.
Original entry on oeis.org
0, 0, 0, 0, 0, 5, 45, 322, 2086, 13092, 82060, 523116, 3429481, 23279555, 164244262, 1206458632, 9228941572, 73471779239, 608000100209, 5222503739340, 46493341311706, 428345495309624, 4078254436854598, 40073317276815681, 405883920183989049, 4232700263388189325
Offset: 0
The crossing partitions of {1,2,3,4,5} that contain singletons are: [1|24|35], [2|14|35], [3|14|25], [4|13|25], [5|13|24].
-
A247494 := n -> add((-1)^(n-k+1)*combinat:-bell(k+1), k=0..n-1) + (-1)^n*hypergeom([-n,1/2],[2],4) - binomial(2*n,n)/(n+1):
seq(round(evalf(A247494(n),100)), n=0..25);
-
Table[Sum[(-1)^(n-k+1)*Binomial[n,k]*(BellB[k]-CatalanNumber[k]),{k,0,n-1}],{n,0,25}] (* Indranil Ghosh, Mar 04 2017 *)
-
B(n) = sum(k=0, n, stirling(n,k,2));
a(n) = sum(k=0, n-1, (-1)^(n-k+1)*binomial(n,k)*(B(k) - binomial(2*k,k)/(k+1))); \\ Indranil Ghosh, Mar 04 2017
-
A247494 = lambda n: sum((-1)^(n-k+1)*binomial(n,k)*(bell_number(k)-catalan_number(k)) for k in (0..n-1))
[A247494(n) for n in range(26)]
Showing 1-5 of 5 results.
Comments