cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290326 Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 3, 24, 33, 13, 0, 0, 0, 0, 33, 188, 338, 252, 68, 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399, 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530, 0, 0, 0, 0, 0, 68, 3740, 39525, 180670, 452865, 685419, 646415, 373175, 121095, 16965, 0, 0, 0, 0, 0, 0, 1938, 51300, 452865, 2020120, 5354832, 9095856, 10215450, 7580040, 3585270, 981708, 118668
Offset: 1

Views

Author

Gheorghe Coserea, Jul 27 2017

Keywords

Comments

Row n >= 3 contains 2*n-3 terms.
c-nets are 3-connected rooted planar maps. This array also counts simple triangulations.
Table in Mullin & Schellenberg has incorrect values T(14,14) = 43494961412, T(15,13) = 21697730849, T(15,14) = 131631305614, T(15,15) = 556461655783. - Sean A. Irvine, Sep 28 2015

Examples

			A(x;t) = t^3*x^3 + (4*t^4 + 3*t^5)*x^4 + (3*t^4 + 24*t^5 + 33*t^6 + 13*t^7)*x^5 + ...
Triangle starts:
n\k  [1] [2] [3] [4] [5] [6]  [7]   [8]    [9]    [10]   [11]   [12]   [13]
[1]  0;
[2]  0,  0;
[3]  0,  0,  1;
[4]  0,  0,  0,  4,  3;
[5]  0,  0,  0,  3,  24, 33,  13;
[6]  0,  0,  0,  0,  33, 188, 338,  252,   68;
[7]  0,  0,  0,  0,  13, 338, 1705, 3580,  3740,  1938,  399;
[8]  0,  0,  0,  0,  0,  252, 3580, 16980, 39525, 51300, 38076, 15180, 2530;
[9]  ...
		

Crossrefs

Rows/Columns sum give A106651 (enumeration of c-nets by the number of vertices).
Antidiagonals sum give A000287 (enumeration of c-nets by the number of edges).

Programs

  • PARI
    T(n,k) = {
      if (n < 3 || k < 3, return(0));
      sum(i=0, k-1, sum(j=0, n-1,
         (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
         (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
          4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
    };
    N=10; concat(concat([0,0,0], apply(n->vector(2*n-3, k, T(n,k)), [3..N])))
    \\ test 1: N=100; y=x*Ser(vector(N, n, sum(i=1+(n+2)\3, (2*n)\3-1, T(i,n-i)))); 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
    /*
    \\ test 2:
    x='x; t='t; N=44; y=Ser(apply(n->Polrev(vector(2*n-3, k, T(n, k)), 't), [3..N+2]), 'x) * t*x^3;
    0 == (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1)
    */

Formula

T(n,k) = Sum_{i=0..k-1} Sum_{j=0..n-1} (-1)^(i+j+1) * ((i+j+2)!/(2!*i!*j!)) * (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)) for all n >= 3, k >= 3.
A106651(n+1) = Sum_{k=1..2*n-3} T(n,k) for n >= 3.
A000287(n) = Sum_{i=1+floor((n+2)/3)..floor(2*n/3)-1} T(i,n-i).
A001506(n) = T(n,n), A001507(n) = T(n+1,n), A001508(n) = T(n+2,n).
A000260(n-2) = T(n, 2*n-3) for n>=3.
G.f. y = A(x;t) satisfies: 0 = (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1). - Gheorghe Coserea, Sep 29 2018

A285165 Triangle read by rows: T(n,k) is the number of c-nets with n-k inner vertices and k outer vertices, 3 <= n, 2 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 7, 6, 1, 73, 56, 16, 1, 879, 640, 208, 30, 1, 11713, 8256, 2848, 560, 48, 1, 167423, 115456, 41216, 9440, 1240, 70, 1, 2519937, 1710592, 624384, 156592, 25864, 2408, 96, 1, 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1, 637446145, 423641088, 158883840, 44169600, 9234368, 1377600, 132480, 7008, 160, 1, 10561615871, 6966960128, 2636197888, 756712960, 169378560, 28663040, 3430528, 261648, 10920, 198, 1
Offset: 3

Views

Author

Gheorghe Coserea, Apr 12 2017

Keywords

Examples

			Triangle starts:
n\k  [2]       [3]       [4]      [5]      [6]     [7]    [8]   [9]  [10]
[3]  1;
[4]  1,        1;
[5]  7,        6,        1;
[6]  73,       56,       16,      1;
[7]  879,      640,      208,     30,      1;
[8]  11713,    8256,     2848,    560,     48,     1
[9]  167423,   115456,   41216,   9440,    1240,   70,    1;
[10] 2519937,  1710592,  624384,  156592,  25864,  2408,  96,   1;
[11] 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1;
[12] ...
		

Crossrefs

Cf. A290326.
Columns k=2-9 give: A106651(k=2), A285166(k=3), A285167(k=4), A285168(k=5), A285169(k=6), A285170(k=7), A285171(k=8), A285172(k=9).

Programs

  • PARI
    x='x; y='y;
    system("wget http://oeis.org/A106651/a106651.txt");
    Fy = read("a106651.txt");
    A106651_ser(N) = {
      my(y0 = 1 + O(x^N), y1=0, n=1);
      while(n++,
        y1 = y0 - subst(Fy, y, y0)/subst(deriv(Fy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      y0;
    };
    z='z; t='t; u='u; c0='c0;
    r1 = 2*t*u + 2*t^2*u + 2*t*u^2 + 2*t^2*u^2;
    r2 = 4*t^2 + 4*t^3 + 4*t^2*u + 4*t^3*u;
    r3 = -4*t^2 - 4*t^3 - 2*t*u - 6*t^2*u - 4*t^3*u - 2*t*u^2 - 2*t^2*u^2;
    r4 = 2*t + 2*t^2 + 4*t^3 - u + t*u + 4*t^3*u + u^2 + t*u^2 - 2*t^2*u^2;
    r5 = -2*t - 2*t^2 - 4*t^3 - 4*t*u - 2*t^2*u - 4*t^3*u + 2*t^2*u^2;
    r6 = u + 2*t*u + 2*t^2*u - t*u^2;
    Fz = r1*z^2 + (r3*c0 + r4)*z + r2*c0^2 + r5*c0 + r6;
    seq(N) = {
      N += 10; my(z0 = 1 + O(t^N) + O(u^N), z1=0, n=1,
      Fz = subst(Fz, 'c0, subst(A106651_ser(N), 'x, 't)));
      while(n++,
        z1 = z0 - subst(Fz, z, z0)/subst(deriv(Fz, z) , z, z0);
        if (z1 == z0, break()); z0 = z1);
      vector(N-10, n, vector(n, k, polcoeff(polcoeff(z0, n-k), k-1)));
    };
    concat(seq(11))

Formula

A106651(n) = T(n,2) = Sum_{k=3..n-1} T(n,k), for n>=4.
T(n,n-2) = A054000(n-3) for n>= 5, T(n,n-3) = 8*A006325(n-3) for n>=6. - Gheorghe Coserea, Apr 19 2017
Showing 1-2 of 2 results.