cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106664 Expansion of g.f.: (1-3*x+x^2)/((1-x)*(1+x)*(1-2*x+2*x^2)).

Original entry on oeis.org

-1, 1, 2, 5, 4, 1, -8, -15, -16, 1, 32, 65, 64, 1, -128, -255, -256, 1, 512, 1025, 1024, 1, -2048, -4095, -4096, 1, 8192, 16385, 16384, 1, -32768, -65535, -65536, 1, 131072, 262145, 262144, 1, -524288, -1048575, -1048576, 1, 2097152, 4194305, 4194304, 1, -8388608, -16777215, -16777216, 1, 33554432
Offset: 0

Views

Author

Creighton Dement, May 13 2005

Keywords

Comments

Superseeker finds that a(n+2) - a(n) = A090131(n+1) (or with different signs, see A078069).
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseiseq[ + .5'i + .5i' - .5'ii' + .5'jj' + .5'kk' + .5e]

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(  (1-3*x+x^2)/((1-x^2)*(1-2*x+2*x^2)) )); // G. C. Greubel, Sep 08 2021
    
  • Mathematica
    CoefficientList[Series[(1-3x+x^2)/((1-x)(1+x)(1-2x+2x^2)),{x,0,60}],x] (* Harvey P. Dale, Mar 20 2013 *)
  • SageMath
    def A106664_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( sinh(x) -exp(x)*(cos(x)-sin(x)) ).egf_to_ogf().list()
    A106664_list(50) # G. C. Greubel, Sep 08 2021

Formula

a(n) = (1/2)*(A010673(n) - A099087(n+2)).
a(n) = (1/2)*(1 - (-1)^n - (1-i)^(n+1) - (1+i)^(n+1)), with i=sqrt(-1). - Ralf Stephan, Nov 16 2010
From G. C. Greubel, Sep 08 2021: (Start)
a(n) = (1-(-1)^n)/2 - 2^((n+1)/2)*cos((n+1)*Pi/4).
a(n) = A000035(n) - A146559(n).
E.g.f.: sinh(x) - exp(x)*(cos(x) - sin(x)). (End)